
www.manaraa.com

Graduate Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2019

Incremental and parallel algorithms for dense
subgraph mining
Apurba Das
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/etd

Part of the Computer Engineering Commons

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University
Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University
Digital Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Das, Apurba, "Incremental and parallel algorithms for dense subgraph mining" (2019). Graduate Theses and Dissertations. 16997.
https://lib.dr.iastate.edu/etd/16997

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F16997&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F16997&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F16997&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F16997&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F16997&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F16997&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=lib.dr.iastate.edu%2Fetd%2F16997&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd/16997?utm_source=lib.dr.iastate.edu%2Fetd%2F16997&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

www.manaraa.com

Incremental and parallel algorithms for dense subgraph mining

by

Apurba Das

A thesis submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Major: Computer Engineering (Software Systems)

Program of Study Committee:
Srikanta Tirthapura, Major Professor

Pavan Aduri
Suraj Kothari

Chinmay Hegde
Neil Zhenqiang Gong

The student author, whose presentation of the scholarship herein was approved by the program of
study committee, is solely responsible for the content of this dissertation. The Graduate College
will ensure this dissertation is globally accessible and will not permit alterations after a degree is

conferred.

Iowa State University

Ames, Iowa

2019

Copyright c© Apurba Das, 2019. All rights reserved.

www.manaraa.com

ii

DEDICATION

I would like to dedicate this thesis to my wife Joshita and to my son Rishan without whose

support I would not have been able to complete this work. I would also like to thank my friends

and family for their loving guidance during this work.

www.manaraa.com

iii

TABLE OF CONTENTS

Page

LIST OF TABLES . vii

LIST OF FIGURES . xi

ACKNOWLEDGMENTS . xvi

ABSTRACT . xvii

CHAPTER 1. OVERVIEW . 1

1.1 Introduction . 1

1.2 Dense Structures in a Graph . 2

1.3 Dynamic Graph Algorithms . 7

1.4 Parallel Algorithms . 9

CHAPTER 2. CONTRIBUTIONS . 11

2.1 Incremental Maintenance of Maximal Cliques . 11

2.2 Parallel Maximal Clique Enumeration on Static and Dynamic Graphs 14

2.3 Incremental Maintenance of Maximal Bicliques . 16

2.4 Parallel Maximal Biclique Enumeration on Static Bipartite Graphs 18

CHAPTER 3. PREVIOUS WORKS . 21

3.1 Maximal Cliques . 21

3.1.1 Sequential Algorithms . 21

3.1.2 Parallel Algorithms . 23

3.2 Maximal Bicliques . 24

3.2.1 Sequential Algorithms . 24

3.2.2 Parallel Algorithms . 25

www.manaraa.com

iv

3.3 Other Dense Structures . 25

3.3.1 Algorithms for Static Graphs . 25

3.3.2 Algorithms for Dynamic Graphs . 27

CHAPTER 4. MAINTENANCE OF MAXIMAL CLIQUES 29

4.1 Introduction . 29

4.2 Preliminaries . 30

4.3 Magnitude of Change . 34

4.3.1 Maximum Possible Change in Maximal Cliques 34

4.3.2 An Error in a Result of Moon and Moser (1965) 37

4.3.3 Bound on the size of change parameterized by max degree ∆ of G 38

4.3.4 Bound on the size of change parameterized by degeneracy d of G 39

4.4 Enumeration of Change in the Set of Maximal Cliques 42

4.4.1 Enumeration of New Maximal Cliques . 43

4.4.2 Practical Algorithm for Enumerating New Maximal Cliques 47

4.4.3 Enumeration of Subsumed Maximal Cliques 51

4.4.4 Decremental Case . 55

4.4.5 Fully Dynamic Case . 55

4.5 Discussion . 56

4.6 Experimental Evaluation . 58

4.6.1 Datasets . 59

4.6.2 Experimental Setup and Implementation Details 61

4.6.3 Discussion of Experimental Results . 63

CHAPTER 5. PARALLEL MAXIMAL CLIQUE ENUMERATION ON STATIC AND DY-

NAMIC GRAPHS . 81

5.1 Introduction . 81

5.2 Preliminaries . 83

5.3 Parallel MCE Algorithms on a Static Graph . 84

www.manaraa.com

v

5.3.1 Algorithm ParTTT . 84

5.3.2 Algorithm ParMCE . 88

5.4 Parallel MCE Algorithm on a Dynamic Graph . 91

5.4.1 Parallel Enumeration of New Maximal Cliques 93

5.4.2 Parallel Enumeration of Subsumed Cliques 96

5.5 Evaluation . 97

5.5.1 Datasets . 98

5.5.2 Implementation of the Algorithms . 99

5.5.3 Discussion of the Results . 101

5.5.4 Comparison with prior work . 106

5.5.5 Summary of Experimental Results . 107

CHAPTER 6. MAINTENANCE OF MAXIMAL BICLIQUES 111

6.1 Introduction . 111

6.2 Preliminaries . 112

6.3 Algorithms for Maximal Bicliques . 113

6.3.1 Baseline Algorithms for Maximal Bicliques 114

6.3.2 Change-Sensitive Algorithm DynamicBC . 115

6.3.3 Enumerating New Maximal Bicliques . 116

6.3.4 Enumerating Subsumed Maximal Bicliques 118

6.3.5 Decremental and Fully Dynamic Cases . 122

6.4 Magnitude of change in Bicliques . 123

6.5 Experimental Evaluation . 127

6.5.1 Datasets . 127

6.5.2 Experimental Setup and Implementation Details 128

6.5.3 Discussion of Results . 129

www.manaraa.com

vi

CHAPTER 7. PARALLEL MAXIMAL BICLIQUE ENUMERATION ON STATIC BIPAR-

TITE GRAPH . 135

7.1 Introduction . 135

7.2 Preliminaries . 135

7.3 Parallel MBE Algorithms . 137

7.3.1 Algorithm ParLMBC . 137

7.3.2 Algorithm ParMBE . 140

7.4 Experiments . 141

7.4.1 Datasets . 142

7.4.2 Implementation of the algorithms . 142

7.4.3 Discussion of the Results . 143

7.4.4 New Sequential Algorithm FMBE . 145

CHAPTER 8. CONCLUSION AND FUTURE WORK . 148

BIBLIOGRAPHY . 150

www.manaraa.com

vii

LIST OF TABLES

Page

Table 2.1 Summary of shared-memory parallel algorithms for MCE. 15

Table 4.1 Input graphs and their aggregate statistics. 61

Table 4.2 Cumulative computation time (in sec.) for new maximal cliques with batch

size ρ = 100. The number of batches for which the cumulative time is

computed is in the parenthesis. 68

Table 4.3 Total time taken to find all the planted cliques incrementally (ρ = 100).

Other algorithms (STIX, OV, MCMEI) cannot find a single planted clique

within an hour. 69

Table 4.4 Decremental computation time (in sec.) of different algorithms upon chang-

ing density of RMAT-100-4000 by deleting edges in reverse order (of the

stream for incremental computation) starting from the original graph. The

reported computation time is for deleting a batch of next 100 edges from

initial graph (at different density). 72

Table 4.5 Decremental computation time (in sec.) of different algorithms upon chang-

ing density of dblp-coauthor by deleting edges in reverse order (of the

stream for incremental computation) starting from the original graph. The

reported computation time is for deleting a batch of next 100 edges from

initial graph (at different density). 72

www.manaraa.com

viii

Table 4.6 Cumulative computation time for adding the same set of edges once in in-

cremental computation and then in decremental computation. The initial

state of each graph for the incremental computation is the final state for the

same graph in the decremental computation and vice versa. Batch size is

1000 for all graphs except RMAT, where batch size is 100. 73

Table 4.7 Cumulative time (in sec.) for enumerating new and subsumed cliques. The

number of batches is shown in parentheses. Batch size ρ = 100 except

ca-cit-HepTh, where ρ = 10 edges. 74

Table 4.8 Cumulative computation time (in sec.) of IMCE with different batch sizes.

Note that ∆ is the maximum degree of the graph before update. Numbers

in the parenthesis indicates the total number of edges inserted incrementally. 75

Table 4.9 Incremental computation time (in sec.) of different algorithm upon changing

the density of dblp-coauthor at each computation with batch size 100. . . 76

Table 4.10 Incremental computation time (in sec.) as a function of the density of

RMAT-100-4000 using batch size 100. 76

Table 4.11 Comparison of incremental computation time (sec.) of IMCE and Naive for

adding a single batch with different batch sizes starting from a graph with

1 million initial edges. ρ indicates the batch size. 78

Table 4.12 Comparison of decremental computation time (sec.) of IMCED and NaiveD

for deleting a single batch with different batch sizes starting from the original

graph. ρ indicates the batch size. 79

Table 5.1 Brief description of the incremental algorithms in this work. 93

Table 5.2 Static and Dynamic Networks, used for evaluation, and their properties. For

some of the graphs used for evaluating the incremental algorithms (Flickr

and Ca-Cit-HepTh), we could not report the information about maximal

cliques as they did not finish within 8 hours, even using parallel algorithms. 109

www.manaraa.com

ix

Table 5.3 Runtime (in sec.) of TTT, ParTTT, and ParMCE with different vertex orderings

on 32 cores. The numbers exclude the time taken for vertex ordering. Note

that the best algorithm, which uses degree based vertex ordering, has zero

additional cost for computing the vertex ordering. 109

Table 5.4 Total Runtime (in sec.) of ParMCE with different vertex orderings (using 32

threads). Total Runtime (TT) = Ranking Time (RT) + Enumeration Time

(ET). 109

Table 5.5 Cumulative runtime (in sec.) over the incremental computation across all

edges, with IMCE and ParIMCE using 32 threads. The total number of edges

that are processed is also presented. 110

Table 5.6 Comparison of parallel runtime (excluding the time for computing vertex

ranking) (in sec.) of ParMCE with a version of PECO that is modified to use

shared-memory, using 32 threads. Three different variants are considered

for each algorithm based on the vertex ordering strategy. 110

Table 5.7 Comparison of runtimes (in sec.) of ParMCE with prior works on shared-

memory algorithms for MCE (with 32 threads). 110

Table 5.8 Total runtime (sec.) of parallel algorithm ParMCE (with different vertex rank-

ing, with 32 threads) and sequential algorithms BKDegeneracy and GreedyBB.110

Table 6.1 Summary of the input graphs. 127

Table 6.2 For each algorithm, the number shows the cumulative computation time for

the number (in the parenthesis) of batch additions incrementally. 129

Table 6.3 Total computation time in hours for different batch sizes. The total time

is split into two numbers. The first number is the time for new maximal

bicliques and the second number is the time for subsumed maximal bicliques.133

Table 6.4 Total computation time in hour by varying the threshold size s. 134

Table 7.1 Static Bipartite Networks used for evaluation, and their properties. 142

www.manaraa.com

x

Table 7.2 Runtime (in sec.) of MineLMBC, ParLMBC, and ParMBE on 16 cores. Numbers

in the parenthesis indicates the parallel speedup. 144

Table 7.3 Scalability of ParMBE with respect to MineLMBC by varying the number of

threads. 144

Table 7.4 Comparison of runtime (in sec.) of ParMBE with CDFS on 16 cores. 145

Table 7.5 Comparison of runtime (in sec.) of MineLMBC, FMBE, and ParMBE (on 16

threads). The speedup of ParMBE in the parenthesis is with respect to new

sequential algorithm FMBE. 147

www.manaraa.com

xi

LIST OF FIGURES

Page

Figure 1.1 Maximal clique in a graph . 2

Figure 1.2 G is a bipartite graph with four maximal bicliques B1, B2, B3, and B4. . . . 4

Figure 1.3 G is a simple undirected graph (which is also a 1-core) with a 2-core K1 and

a 3-core K2. 4

Figure 1.5 Example of degree based γ-quasi-clique with γ = 0.6. (a) the original

graph G (b) vertices {a, b, c, f, g} form a γ-quasi-clique Q1. (c) vertices

{a, b, c, d, f, g} form a maximal γ-quasi-clique Q2. 5

Figure 4.1 Change in maximal cliques due to addition of edges. On the left is the initial

graph G with maximal cliques {1, 2, 5} and {2, 3, 4}; On the middle is the

graph G′ after adding edges (3, 5) and (4, 5) to G resulting in new maximal

clique {2, 3, 4, 5} and only subsumed maximal clique {2, 3, 4}; On the right

is the graph G′′ after adding edges (1, 3) and (1, 4) to G′ resulting in new

maximal clique {1, 2, 3, 4, 5} and subsumed cliques {1, 2, 5} and {2, 3, 4, 5}. . 30

Figure 4.2 A large change in set of maximal cliques when a few edges are added. The

vertex set is partitioned into V1 and V2. On the left is G, the original graph

on n vertices where each vertex in V1 is connected to each vertex in V2,

and V1 is an independent set. In G, the induced subgraph G2 on vertex set

V2 forms a Moon-Moser graph. On the right is G′, the graph formed after

adding edge set H to G such that the induced subgraph on vertex set V1

becomes a Moon-Moser graph. Let c be a clique in G2, and c′ a new clique

in G′ formed among vertices in V1. Note that c ∪ {v} was a maximal clique

in G, and is now subsumed by a new maximal clique c ∪ c′. 36

www.manaraa.com

xii

Figure 4.3 On the left is Hn where each vertex v in Si is connected to each vertex u in

Sj , i 6= j. On the right is Gn which is formed from Hn by adding four edges

to S0. For the case (n mod 3) = 1, Hn and Gn are non-isomorphic graphs

on n vertices, with f(n) maximal cliques each, showing a counterexample

to Theorem 2 of Moon and Moser [104]. 37

Figure 4.4 Illustration of Lemma 12 that, the set of new maximal cliques in G′ con-

taining e = (4, 5), i.e. the single clique {2, 3, 4, 5}, is exactly the set of all

maximal cliques in G′e. 44

Figure 4.5 Enumeration of new maximal cliques from G to G′ due to addition of new

edges (3, 6) and (4, 6). Order the new edges as (3, 6) followed by (4, 6). There

are two new maximal cliques containing edge (4, 6), {4, 5, 6} and {2, 3, 4, 6}.

With TTTExcludeEdges, only {4, 5, 6} is enumerated when considering edge

(4, 6), since {2, 3, 4, 6} has already been enumerated while considering edge

(3, 6). 49

Figure 4.6 Change in the maximal cliques due to both addition and deletion of edges.

The initial graph G, graph G1 after deleting edge (b, c) from G, resulting in

new maximal cliques {a, c, d} and {a, b, d} and one deleted maximal clique

{a, b, c, d}, graph G2 after adding edges (a, e), (e, d), (a, f), and (d, f) from

G1 resulting in new maximal cliques {a, e, d, c} and {a, b, d, f} and subsumed

cliques {a, c, d}, {a, b, d}, {c, e}, and {b, f}. Note that, the intermediate new

cliques (at state G1) {a, c, d} and {a, b, d} are only “transient” maximal

cliques, and are not in the final graph G2. 56

Figure 4.7 Computation time for enumerating the change in set of maximal cliques for

IMCE, and size-of-change per batch (batch size ρ = 1000). The left y axis

shows the size of change and the right y axis shows the computation time

in seconds. 64

www.manaraa.com

xiii

Figure 4.8 Computation time (in sec.) broken down into time for new and subsumed

cliques with batch size ρ = 1000. Average time in the y-axis is the average

taken over the total computation times (new + subsumed) of the iterations

in each of the ranges on the x-axis. 65

Figure 4.9 Difference in computation time due to different strategies for subsumed

cliques computation: once by storing the maximal cliques and another by

directly checking for maximality (without storing the maximal cliques). We

use batch size 1000 for all graphs except for ca-cit-HepTh where we use

batch size of 100. 66

Figure 4.10 Performance of IMCE with edge stream centering around 1K highest degree

vertices considering batch size 100. 67

Figure 4.11 Computation time for enumerating the change in set of maximal cliques

for decremental case when the edges are deleted from the graph instead

of insertion, and size-of-change per batch (batch size ρ = 100 except for

flickr-growth where the batch size is 10). The left y axis shows the size

of change and the right y axis shows the computation time in seconds. . . . 69

Figure 4.12 Fully dynamic case where both addition and deletion of edges are performed

in a streaming manner. Each batch (of size 100) in the stream consists of

mixed edges. 70

Figure 4.13 Performance of IMCE when the density of the graph changes over time. . . . 71

Figure 4.15 Memory cost of IMCE with and without using hash function (ρ = 1000). . . . 79

www.manaraa.com

xiv

Figure 5.1 Imbalanced in sizes of sub-problems for MCE, where each sub-problem cor-

responds to the maximal cliques of a single vertex in the given graph. (a)

As-Skitter: 0.3% of sub-problems form 90% of total number of maximal

cliques. (b) Wiki-Talk: only 0.002% of sub-problems yield 90% of all maxi-

mal cliques. (c) As-Skitter: 0.02% of sub-problems take 90% of total run-

time of MCE. (d) Wiki-Talk: only 0.004% of sub-problems take 90% of total

runtime of MCE . 82

Figure 5.2 Frequency distribution of sizes of maximal cliques across different input graphs. 99

Figure 5.3 Parallel speedup when compared with TTT (sequential algo. due to Tomita

et al. [143]) as a function of the number of threads. 102

Figure 5.4 Runtime as a function of the number of threads. 103

Figure 5.5 Parallel speedup of ParIMCE over IMCE as a function of the size of the change

in the set of maximal cliques. The size of the change is measured by the

total number of new maximal cliques and subsumed maximal cliques when

a batch of edges is added to the graph. 104

Figure 5.6 Parallel speedup of ParIMCE over IMCE as a function of number of threads,

using the cumulative time of ParIMCE and of IMCE for processing all batches

of edges. 105

Figure 6.1 Change in maximal bicliques when the graph changes from G1 to G2 due

to the addition of edge set H = {{a, y}, {c, x}}. Each maximal biclique in

G1 is subsumed by a larger maximal biclique in G2, and there is one new

maximal biclique in G2. 111

Figure 6.2 Cocktail-party graph on 6 vertices CP (3) . 113

Figure 6.3 The original graph G has 4 maximal bicliques. When new edges in H (in

dotted line) are added to G, all maximal bicliques in G remain maximal in

G+H and only one maximal biclique is newly formed (< {a3, a4}, {b3, b4} >).114

www.manaraa.com

xv

Figure 6.4 Construction of G′e from G′ = G+H when a set of new edges H = {e, h} is

added to G. A = ΓG′(v) = {u, x} and B = ΓG′(u) = {v, y}. 116

Figure 6.5 Construction showing the changes in the set of maximal bicliques when a

new edge is added. G is in the left on n = 6 vertices. G′′ consists of vertices

in L′ and R′ and edges among them to make it a cocktail-party graph. G′

in the right is obtained by adding edge e = (u, v) to G. 125

Figure 6.6 Computation time (in sec.) for total change vs. size of total change. The

left y-axis shows the change and the right y-axis shows the computation time.130

Figure 6.7 Computation time (in sec.) broken down into time for new and subsumed

bicliques. 131

Figure 6.8 Memory consumption (in MB) with and without using hash function. 133

www.manaraa.com

xvi

ACKNOWLEDGMENTS

I would like to take this opportunity to express my thanks to those who helped me with various

aspects of conducting research and the writing of this thesis. First and foremost, Dr. Srikanta

Tirthapura for his guidance, patience and support throughout this research and the writing of this

thesis. His insights and words of encouragement have often inspired me and renewed my hopes for

completing my graduate education. I would also like to thank my committee members for their

efforts and guidance to this work. I would additionally like to thank all my teachers who inspired

me to enter into this research world and taught me the art of asking questions which is the seed of

a successful research endeavor.

I would like to thank all the staff members in the Department of Electrical and Computer

Engineering as well as in Graduate College for prompt responses to all my questions and doubts.

Next I would like to thank all my colleagues at our lab with whom I spent wonderful times

for these five precious years of my life through discussing interesting problems and loads of fun.

Special thanks goes to Vahid with whom I worked on multiple problems. I appreciate his thoughtful

comments on the works and the code review.

I would like to thank all my friends and neighbors in Ames, IA. Life would become very hard

away from home without their company.

I would like to thank my family and friends for their love, care, and support. Last but not

the least, I would like to thank my wonderful wife Joshita who shared with me the ups and downs

throughout my graduate career and never complained, but always encouraged. I appreciate her

patience throughout this journey.

Finally, I am grateful to the support by the National Science Foundation under Grant IIS-

1527541 and CCF-1725702.

www.manaraa.com

xvii

ABSTRACT

The task of maintaining densely connected subgraphs from a continuously evolving graph is

important because it solves many practical problems that require constant monitoring over the

continuous stream of linked data often represented as a graph. For example, continuous mainte-

nance of a certain group of closely connected nodes can reveal unusual activity over the transaction

network, identification, and evolution of active groups in the social network, etc. On the other

hand, mining these structures from graph data is often expensive because of the complexity of the

computation and the volume of the structures (the number of densely connected structures can be

of exponential order on the number of vertices in the graph). One way to deal with the expensive

computations is to consider parallel computation.

In this thesis, we advance the state of the art by developing provably efficient algorithms for

mining maximal cliques and maximal bicliques; two fundamental dense structures.

First, we consider the design of efficient algorithms for the maintenance of maximal cliques and

maximal bicliques in an evolving network. We observe that it is important to locate the region

of the graph in the event of the update so that we can maintain the structures by computing

the changes exactly where it is located. Following this observation, we design efficient techniques

that find appropriate subgraphs for identifying the changes in the structures. We prove that our

algorithms can maintain dense structures efficiently. More specifically, we show that our algorithms

can quickly compute the changes when it is small irrespective of the size of the graph. We empirically

evaluate our algorithms and show that our algorithms significantly outperform the state of the art

algorithms.

Next, we consider parallel computation for efficient utilization of the multiple cores in a multi-

core computing system so that the expensive mining tasks can be eased off and we can achieve

better speedup than their efficient sequential counterparts. We design shared memory parallel

www.manaraa.com

xviii

algorithms for the mining of maximal cliques and maximal bicliques and we prove the efficiency of

the parallel algorithms through showing that the total work performed by the parallel algorithm

is equivalent to the time complexity of the best sequential algorithm for doing the same task. Our

experimental study shows that we achieve good speedup over the prior state of the art parallel

algorithms and significant speedup over the state of the art sequential algorithms. We also show

that our parallel algorithms scale almost linearly with the increase in the processor cores.

www.manaraa.com

1

CHAPTER 1. OVERVIEW

1.1 Introduction

Graphs are ubiquitous in representing relationships among data points in social network, telecom-

munication network, transaction network etc. Changes in these networks over time are well rep-

resented using dynamic graph where new edges/vertices are added and existing edges/vertices are

deleted. For example, consider friendship network where a new edge is added when two unknown

persons become friend and an existing edge is deleted when two friends become unfriend.

At a high level, dense structure in a graph is a subgraph where the nodes are tightly connected.

Mining dense structures from a dynamic graph is an important task as it reveals many interest-

ing properties and structures in a network. For examples, real-time identification of the stories

from twitter is possible through the mining of dense subgraphs from appropriately defined graph

using twitter data [10]. Broadly speaking, identifying dense structures in a graph is applicable

to any task that needs to identify and analyze communities among users in micro-blogging plat-

forms [68], to identify groups of closely linked people in a social network [61, 85, 94], to identify

web communities [56, 82, 120], to construct the Phylogenetic Tree of Life [43, 124, 154] etc.

Many graph mining tasks are based upon maximal clique and maximal biclique, which are

among the fundamental dense structures in a network. Examples where maximal cliques are used

include the work of Palla et al. [113] on clustering and community detection in social and biological

network, Rokhlenko et al. [119] on the study of co-expression of genes under stress, Harley et al. [62]

on integrating different types of genome mapping data, Chateau et al. [27] on maintaining common

intervals of genomes, Koichi et al. [79] on discovering chemical structures from large-scale chemical

databases, various problems on mining biological data [60, 64, 102, 28, 72, 119, 157], inference in

graphical models [80] etc. The work of Kumar et al. [82] on detecting cyber-communities from the

web graph, Murata et al. [108] on identifying user communities from web log data, Lehmann et

www.manaraa.com

2

al. [85] on community detection in collaboration networks, Braun et al. [22] on detecting credit-

card fraud in transaction networks, various problems in bioinformatics [159, 91, 15], social network

analysis [85, 57] are all based on mining maximal bicliques in an appropriately defined bipartite

graph. Another application of maximal biclique is in the task of mining closed item-sets from

transactional databases [114]. One approach to closed item-sets is to enumerate maximal bicliques

from a bipartite graph representing the transactional database where the different transactions are

in one partition and the set of items are in the other partition, with edges connecting a transaction

to an item if the item was included in that transaction [88].

1.2 Dense Structures in a Graph

There are many different types of dense subgraphs in the literature. In this work we focus

on two fundamental dense structures maximal cliques and maximal bicliques and will discuss here

about these two structures in greater detail and then we will discuss about other dense structures

briefly.

Maximal Clique: The maximal clique is perhaps the most fundamental and widely studied dense

subgraph. Let G = (V,E) be an undirected unweighted graph on vertex set V and edge set E. A

clique in G is a set of vertices C ⊆ V such that any two vertices in C are connected to each other in

G. A clique is called maximal if it is not a proper subset of any other clique (see Fig. 1.1). In this

work we study the problem of Maximal Clique Enumeration (MCE) from a graph, which requires

to enumerate all cliques (complete subgraphs) in the graph that are maximal.

a

b c

d

ef

g

a

b c

d

ef

g

a

b c

d

ef

g

(a) Input Graph G (b) Non-Maximal Clique in G (c) Maximal Clique in G

Figure 1.1: Maximal clique in a graph

www.manaraa.com

3

MCE is a computationally hard problem since it is harder than the maximum clique problem,

a classical NP-complete combinatorial problem that asks to find a clique of the largest size in a

graph. Note that maximal clique and maximum clique are two related, but distinct notions. A

maximum clique is also a maximal clique, but a maximal clique need not be a maximum clique.

The computational cost of enumerating maximal cliques can be higher than the cost of finding the

maximum clique, since the output size (set of all maximal cliques) can itself be very large. Moon

and Moser [104] showed that a graph on n vertices can have as many as 3n/3 maximal cliques,

which is proved to be a tight bound. Real-world networks typically do not have cliques of such

high complexity and as a result, it is feasible to enumerate maximal cliques from large graphs.

The literature is rich on sequential algorithms for MCE. Bron and Kerbosch [23] introduced a

backtracking search method to enumerate maximal cliques. Tomita et. al [143] introduced the idea

of “pivoting” in the backtracking search, which led to a significant improvement in the runtime.

This has been followed up by further work such as due to Eppstein et al. [49], who used a degeneracy-

based vertex ordering on top of the pivot selection strategy.

Maximal Biclique: A bipartite graph G = (L,R,E) is a graph whose vertex set can be partitioned

into two sets L and R such that each edge in E connects a vertex in L with a vertex in R. Given

a bipartite graph G = (L,R,E), a biclique (X,Y), X ⊆ L, Y ⊆ R is a subgraph of G where for

every vertex in X is connected to every vertex in Y (see Figure 1.2 for an example). A biclique is

called maximal if it is not a subgraph of another biclique. Along with the study of maximal clique

enumeration, In this work we study the problem of Maximal Biclique Enumeration (MBE) from

a graph, which requires to enumerate all bicliques (complete bipartite subgraphs) in a bipartite

graph that are maximal.

The worst-case complexity of any algorithm for MBE is necessarily high, since the number of

maximal bicliques can be exponential in the number of vertices [117]. However, the number of

maximal bicliques in real world graphs is typically much smaller. For example, the number of

maximal bicliques is linear in the graph size for graphs with bounded arboricity [48]. Sequential

methods for MBE have been studied for many decades [48, 6, 155, 97, 88, 109, 159]. The algorithm

www.manaraa.com

4

Figure 1.2: G is a bipartite graph with four maximal bicliques B1, B2, B3, and B4.

that seems to have the best practical performance is a branch-and-bound algorithm due to Liu et

al. [92], which we call MineLMBC.

k-Core, k-Truss: A k-core is a maximally connected subgraph in which every vertex is con-

nected to at least k other vertices (see Figure 1.3 for an example). This structure can be found in

polynomial time [14] and is an important building block in many graph mining and visualization

applications [7, 42, 59]. A closely related concept is the core number k of a vertex v which is the

maximum k such that v is contained in a k-core but in no k+1 core. A recent application of k-core is

due to Cheng et al. [31] for finding cluster centers of the k-means clustering algorithm [63]. Similar

to the k-core, in a k-truss, every edge is connected to at least (k − 2)-triangles. These structures

are also sometimes called triangle core [121] due to analogy with the k-core. Huang et al. [65] use

k-truss for community discovery in dynamic network.

Figure 1.3: G is a simple undirected graph (which is also a 1-core) with a 2-core K1 and a 3-core

K2.

www.manaraa.com

5

γ-Quasi-Clique: A connected subgraph q is a γ-quasi-clique if the ratio of total number of edges

in q to the number of edges of a complete graph of size |q| is at least γ (called the density of a

quasi-clique). A quasi-clique is maximal if it is not a subgraph of another quasi-clique. Unlike

maximal clique and maximal biclique, deciding maximality of a quasi-clique is an NP-complete

problem [149]. Also, it is NP-complete to decide whether there exists a γ-quasi-clique of size at

least k [115]. Brunato et al. [24] use this structure and design heuristic algorithm for finding over-

lapping community in a network. In [17], the authors tried to find important proteins in human

body by finding large quasi-clique in the protein network. Another definition of quasi-cliques [93]

is based on the degree threshold γ where a subgraph q is γ-quasi-clique if degree of each vertex in

q is at least γ(|q|−1). Note that all degree based quasi-cliques are also density based quasi-cliques,

but the reverse is not always true. See Figure 1.5 for an example of degree based γ-quasi-clique.

a

b c

d

ef

g

(a) G

a

b c

d

ef

g

(b) Q1

a

b c

d

ef

g

(c) Q2

Figure 1.5: Example of degree based γ-quasi-clique with γ = 0.6. (a) the original graph G (b)

vertices {a, b, c, f, g} form a γ-quasi-clique Q1. (c) vertices {a, b, c, d, f, g} form a maximal γ-quasi-

clique Q2.

Quasi-Biclique [132]: A quasi-biclique is a bipartite subgraph of an undirected bipartite graph

G = (L ∪R,E) induced by L′ ⊆ L and R′ ⊆ R such that ∀v ∈ L′, |R′| − |ΓR′(v)| ≤ ε and ∀v ∈ R′,

www.manaraa.com

6

|L′| − |ΓL′(v)| ≤ ε for small integer values of ε where ΓV (u) denote all the vertices in V that are

adjacent to u. This is one of many definitions of a quasi-biclique [100, 154, 89, 133]. Sim et al. [132]

use this type of quasi-bicliques in modeling correlation between stocks and financial ratios.

Densest Subgraph: A densest subgraph of the original graph G = (V,E) is a subgraph GU of G

induced by U with density d∗ = max
U⊆V

E(GU)

|U |
. This structure has been widely studied for over a

decade [26, 9, 77] along with many variants starting from 1984 when Goldberg [58] first designed

a polynomial time algorithm for finding a densest subgraph in a graph using the technique of

maximum flow algorithm. However when size of the subgraph is imposed, the problem of finding

densest subgraph becomes NP-hard [9]. This structure is useful in many applications including

index construction for graph reachability and distance queries [33, 128, 70], decomposing the graph

into locally-dense components [139] etc.

Densest Bipartite Subgraph: A densest bipartite subgraph is a bipartite subgraph induced

by L′ ⊆ L and R′ ⊆ R of an undirected bipartite graph G = (L ∪ R,E) with density d∗ =

max
L′⊆L,R′⊆R

e(L′, R′)√
|L′||R′|

where e(L′, R′) denote the total number of edges whose one endpoint is in L′

and the other endpoint is in R′. In [8], the author uses this definition for developing a general

technique that can be used for finding dense subgraph near a targeted vertex by exploring only a

portion of the graph.

Triangle Densest Subgraph (TDS): A triangle densest subgraph is a subgraph of the original

graph G = (V,E) induced by S ⊆ V with triangle density τ∗ = max
S⊆V

t(S)/|S| where t(S) is the

number of triangles induced by S. In [147], the author defined and used this structure for finding

those subgraphs which are dense (near-cliques, that misses a few edges from being cliques) but not

detected using algorithms for densest subgraph. The main purpose of defining such structure is that

these can be found in polynomial time unlike near-clique finding problem which is NP-hard [149].

www.manaraa.com

7

k-Clique Densest Subgraph: A k-clique densest subgraph is a subgraph of the original graph

G = (V,E) induced by S ⊆ V with k-clique density h∗k = max
S⊆V

ck(S)

|S|
where ck(S) is the number

of k-cliques induced by vertex set S. Unlike densest subgraph problem with size restriction, this

problem can be exactly solvable in polynomial time [101]. The purpose of introducing such defi-

nition of dense structure is to formulate a tractable problem for finding dense structure when the

size is predetermined.

(p, q)-Biclique Densest Subgraph: A (p, q)-biclique densest subgraph is a bipartite subgraph

induced by a vertex set S ⊆ L ∪ R of a undirected bipartite graph G = (L ∪ R,E) such that

the (p, q)-biclique density ρ∗p,q(S) = max
S⊆L∪R

cp,q(S)

|S|
where cp,q(S) is the number of (p, q)-bicliques

induced by S. Mitzenmacher et al. [101] introduce this notion for characterizing dense bipartite

graph and use the techniques similar to that of k-clique densest subgraph for finding these dense

bipartite subgraphs.

1.3 Dynamic Graph Algorithms

Most of the applications discussed above are for batch processing meaning that given a static

network, the goal is to mine the dense structures for understanding and exploring useful and

interesting properties of the network. Suppose the above problems are presented in the dynamic

setting where the graph evolves over time due to the addition/deletion of edges. To maintain the

dense structures in an evolving graph, if we need to use the static algorithm for enumerating the

structures, we need to recompute all the structures from scratch once the graph is updated. In doing

so, we may end up enumerating a large number of dense structures that are not affected due to

the changes in the graph. Clearly there are wasteful computations, because, we end up computing

unaffected structures more than once. Thus we need new algorithms for the maintenance of dense

structures that can enumerate only the structures that are (1) new dense structures that emerges

www.manaraa.com

8

due to the addition of new edges and (2) old dense structures that are no more dense due to the

changes in the graph.

There are two broad classes of algorithms for dealing with the dynamic datasets. One is the

dynamic algorithm and another is the streaming algorithm. The main difference between a dy-

namic algorithm and a streaming algorithm is that in streaming algorithm the space cost must

be sub-linear on the size of the input observed so far but in dynamic algorithm space cost need

not necessarily be of sub linear order but the update and query time should be as minimal as

possible. A dynamic algorithm is called incremental when only the insertion of new data elements

are considered, decremental when only the deletion of existing data elements are considered, and

fully-dynamic when both insertions and deletions are considered. It poses several challenges in the

maintenance of dense structures in a dynamic graph:

• The maintenance of dense structure is a kind of enumeration in the dynamic graph each

time the graph is updated. It is challenging to know the maximum possible running time

without knowing the maximum possible size of the changes in the structure when the graph

is updated because, the computation time should be at least the time required to enumerate

the structures.

• It is challenging to compute the maximum possible number of changes in the structures when

the graph is updated without knowing the newly added edges or existing edges to be removed

in advance.

• One goal in the dynamic algorithm is to reduce the re-computation as much as possible when

the graph is updated. A strategy for the reduction in re-computation is to find a subgraph as

small as possible where we can find all the new/deleted structures only due to the changes in

the graph. However, it is challenging to find such a subgraph. This is because, search space

changes when the definition of the structure changes. For example, search space for maximal

clique and maximal biclique are different.

www.manaraa.com

9

1.4 Parallel Algorithms

The number of dense structures in a large graph are usually large. For example, we observed

that the number of maximal cliques in Orkut network is 2.3 billion and it takes around 29K seconds

to enumerate these maximal cliques using one of the most efficient sequential algorithm for maximal

clique enumeration such as TTT in a 4 core machine as well as in a 32 core machine. Clearly, the

sequential algorithm can not take advantage of the power of multiple processors in a multicore

computing system for such a costly computation. Here comes the power of parallel and distributed

algorithms that can take advantage of the multiple processing units in enumerating the dense

structures in parallel. There are mainly two paradigms of distributing the tasks: (1) Distributed

Algorithms: distributing the graph to multiple processing units so that each unit processes on its

part of the graph and result is accumulated from all the units at the end of the computations;

(2) Shared Memory Parallel Algorithms: keep the graph in a single shared global memory and

leverage the computation tasks to multiple processing units of a single multi-core computer so

that each processor can access the graph from the global location and enumerate the structures in

parallel. Shared memory parallelism has several advantages over distributed memory parallelism.

Firstly, we need not think about partitioning the graph in shared memory parallel computation as

opposed to distributed memory computation because graph is accessed by multiple processors from

a single shared global memory location in shared memory computation. Secondly, shared memory

has no network communication overhead as all the processors reside in a single computer. Thirdly,

updating the graph becomes easy in shared memory computation in computing on dynamic graph.

There are mainly two types of models for shared memory algorithm design: (1) PRAM Model

and (2) Work-Depth Model.

PRAM Model: In Parallel Random Access Model (PRAM), every computing core can access the

single share global memory simultaneously at each unit of time. In this model, the total number of

operations performed by the algorithm is characterized by the product of its computation time T

and the number of processors P involved in the computations. We need to account the number of

www.manaraa.com

10

processors for analyzing a parallel algorithm in this model. PRAM model supports flat-parallelism

meaning that it can run the sequential components of the algorithm in parallel.

Work-Depth Model: This model supports nested fork-join parallelism. The algorithm using

this model can be expressed as a Directed Acyclic Graph (DAG) where each node in the graph

represents a task and the directed edges represents the order or computations. The complexity of

the algorithm in this model is analyzed by computing its work W , which is the cumulative cost of

all the tasks in the DAG, and the depth D which is the maximum cost of all the tasks on a directed

path in the DAG. This is a formal model used for the analysis of a parallel algorithm and the

analysis is independent of the number of processors. The amount of parallelism can be expressed

as W
D . In our research we will focus on the work-depth model in designing parallel algorithms.

Roadmap: The chapters in this thesis are organized in the following way: We summarize our

contributions in this thesis in Chapter 2, related and previous works in Chapter 3. We present

our work on incremental maintenance of maximal cliques in a dynamic graph in Chapter 4, shared

memory parallel algorithm for maximal clique enumeration in Chapter 5, incremental maintenance

of maximal bicliques in a dynamic bipartite graph in Chapter 6, and work on shared memory

parallel algorithm for maximal biclique enumeration in a bipartite graph in Chapter 7.

www.manaraa.com

11

CHAPTER 2. CONTRIBUTIONS

In this section we discuss about the problems that we solve in this thesis with high level dis-

cussions on the solution approaches and experimental observations. Broadly, we focus on the

enumeration of dense subgraphs from large static and dynamic graphs and we design efficient se-

quential and parallel algorithms for solving such enumeration problems. We empirically evaluate

our algorithms on real world and synthetic graphs with millions of vertices and tens of million of

edges to show that our algorithms are substantial improvement over the state-of-the-art algorithms

for solving the same problems that are magnitude of order slower than our algorithms. Here are

the summary of contributions:

2.1 Incremental Maintenance of Maximal Cliques

When the graph keeps changing over time due to addition or deletion of edges, the set of maximal

cliques in the original graph changes. In the event of the addition of new edges the changes in the

set of maximal cliques include (1) the set of new maximal cliques that are newly formed and (2)

the set of maximal cliques of the original graph that become subgraph (subsumed) of larger new

maximal cliques in the updated graph. Thus the changes in the set of maximal cliques is the union

of the set of new maximal cliques and the set of subsumed cliques. Our contributions are as follows:

(A) Magnitude of Change in the Set of Maximal Cliques: We present a tight analysis of

the magnitude of change in the set of maximal cliques in a graph, when a set of edges are added.

When a set of edges H is added to graph G = (V,E) resulting in graph G′ = G ∪H = (V,E ∪H).

(A.1): We present nearly matching upper and lower bounds on the maximum size of Λ(G,G∪H),

taken across all possible graphs G and edge sets H. Let f(n) denote the maximum number of

maximal cliques in a graph on n vertices. A result of Moon and Moser [104] shows that f(n) is

www.manaraa.com

12

approximately 3n/3. We show that by the addition of a small number of edges to the graph G on

n vertices, it is possible to cause a change of nearly 2f(n) ≈ 2 · 3n/3. We also note that this is an

upper bound on the magnitude of Λ(G,G′). We present this analysis in Theorem 3.

(A.2): We encountered an error in the 50-year old result of Moon and Moser [104] on the number

of maximal cliques in a graph, which is directly relevant to our bounds on the change in the set of

maximal cliques. We present our correction to their result in Observation 1.

It is easy to see that the set of maximal cliques can change by very little upon the addition of

edges. For instance, adding a single edge between two vertices that are part of different components

can lead to only a single new maximal clique being added (the clique consisting of a single edge),

and no maximal cliques subsumed, so that the total change in the set of maximal cliques is 1. Thus,

we note that the magnitude of the change can vary significantly from one input instance to another.

(B) Algorithm for Maintaining Maximal Cliques: We present incremental and decremental

algorithms for maintaining the set of maximal cliques of a dynamic graph. We describe our results

on incremental algorithms. Results for decremental algorithms are similar. The key algorithmic

contributions in this work are as follows:

(B.1) We present algorithms that take as input G and H, and enumerate the elements of Λ(G,G′)

in time proportional to the size of Λ(G,G′), i.e. the magnitude of the change in the set of maximal

cliques. We refer to such algorithms as change-sensitive algorithms. To our knowledge, these are the

first provably change-sensitive algorithms for maintaining the set of maximal cliques in a dynamic

graph. The time taken for enumerating newly formed cliques Λnew(G,G′) is O(∆3ρ|Λnew(G,G′)|)

where ∆ is the maximum degree of a vertex in G′ and ρ is the number of edges in H. The time

taken for enumerating subsumed cliques Λdel(G,G′) is O(2ρ|Λnew(G,G′)|). Note that when ρ, the

size of a batch of edges, is logarithmic in ∆, the cost of enumerating subsumed cliques is of the

same order as that of enumerating new cliques.

www.manaraa.com

13

Our algorithm for enumerating the change (in the set of maximal cliques) is based on an explo-

ration of a carefully chosen subgraph of G that is local to the set of edges that have been added.

Importantly, it does not iterate through existing maximal cliques in the graph to enumerate the

change, either for enumerating new maximal cliques, or for subsumed maximal cliques. The key

aspect of the algorithm is that through exploring this subgraph, it is able to directly “zero in” on

maximal cliques that have changed (either added or subsumed). This approach reduces wasteful

effort in enumeration, when compared with an approach that iterates through the set of existing

maximal cliques. Based on our theoretically-efficient algorithms, we present a practical algorithm

IMCE for enumerating new and subsumed cliques, and an efficient implementation.

(B.2) Our methods extend to the decremental case, to handle deletion of edges from the graph.

They can also be applied to the fully dynamic case, where the change includes both the addition

and deletion of edges from the graph. However, the fully dynamic case is not provably change-

sensitive, as discussed in Section 4.4.4.

(C) Experimental Evaluation: We present empirical evaluation of our algorithm using real

world dynamic graphs as well as synthetic graphs. Our experimental study shows that IMCE can

enumerate change in maximal cliques in a large graph with of the order of a hundred thousand

vertices and millions of edges within a few seconds. Our comparison with prior and recent works

show that IMCE significantly outperform prior solutions, including ones due to Stix [135], Ottosen

and Vomlel [112], and Sun et al. [136]. For example, on the flickr-growth graph, our algorithms

are faster than [135, 112, 136] by a factor of more than a thousand. On the flickr-growth graph,

in order to maintain the set of maximal cliques over the insertion of 250 batches of 100 edges each,

IMCE took about 40 ms, while prior techniques took anywhere from 5 mins to 2 hrs. Further details

are in Section 4.6.

www.manaraa.com

14

2.2 Parallel Maximal Clique Enumeration on Static and Dynamic Graphs

When the number of maximal cliques in the input graph becomes very large, it becomes costly

to enumerate all maximal cliques using an efficient sequential algorithm. Also, running those

sequential algorithms in a multicore computing system does not help in gaining performance by

utilizing the power of multiple processors when it becomes difficult to parallelize the operations

in the sequential algorithm. In this work, we design shared memory parallel algorithms for the

enumeration of maximal cliques from static graph and the maintenance of maximal cliques in a

dynamic graph. We make the following contributions towards enumerating all maximal cliques in

a simple graph.

Theoretically Efficient Parallel Algorithm: We present a shared-memory parallel algorithm

ParTTT that takes as input a graph G and enumerates all maximal cliques in G. ParTTT is an

efficient parallelization of the algorithm due to Tomita, Tanaka, and Takahashi [143]. Our analysis

of ParTTT using a work-depth model of computation [18] shows that it is work-efficient when

compared with [143] and has a low parallel depth. To our knowledge, this is the first shared-

memory parallel algorithm for MCE with such provable properties.

Optimized Parallel Algorithm: We present a shared-memory parallel algorithm ParMCE that

builds on ParTTT and yields improved practical performance. Unlike ParTTT, which starts with a

single task at the top level that spawns recursive subtasks as it proceeds, which leads to a lack of

parallelism at the top level of recursion, ParMCE spawns multiple parallel tasks at the top level. To

achieve this, ParMCE uses per-vertex parallelization, where a separate sub-problem is created for

each vertex and different sub-problems are processed in parallel. Each sub-problem is required to

enumerate cliques that contain the assigned vertex, and care is taken to prevent overlap between

sub-problems. Each per-vertex sub-problem is further processed in parallel using ParTTT – this

additional (recursive) level of parallelism using ParTTT is important since different per-vertex sub-

problems may have significantly different computational costs, and having each run as a separate

sequential task may lead to uneven load balance. To further address load balance, we use a vertex

www.manaraa.com

15

ordering in assigning cliques to different per-vertex sub-problems. For ordering the vertices, we use

various metrics such as degree, triangle count, and the degeneracy number of the vertices.

Incremental Parallel Algorithm: Next, we present a parallel algorithm ParIMCE that can main-

tain the set of maximal cliques in a dynamic graph, when the graph is updated due to the addition

of new edges. When a batch of edges are added to the graph, ParIMCE can (in parallel) enumerate

the set of all new maximal cliques that emerged and the set of all maximal cliques that are no

longer maximal (subsumed cliques). ParIMCE consists of two parts: ParIMCENew for enumerating

new maximal cliques, and ParIMCESub for enumerating subsumed maximal cliques. We analyze

ParIMCE using the work-depth model and show that it is work-efficient relative to an efficient

sequential algorithm, and has a low parallel depth. A summary of our algorithms is shown in

Table 2.1.

Table 2.1: Summary of shared-memory parallel algorithms for MCE.

Algorithm Type Description

ParTTT Static A work-efficient parallel algorithm for MCE on a static graph

ParMCE Static A practical parallel algorithm for MCE on a static graph dealing with load imbalance

ParIMCE Dynamic

ParIMCENew: A work-efficient parallel algorithm for enumerating new

maximal cliques in a dynamic graph.

ParIMCESub: A work-efficient parallel algorithm for enumerating subsumed

maximal cliques in a dynamic graph.

Experimental Evaluation: We implemented all our algorithms and our experiments show that

ParMCE yields a speedup of 15x-21x when compared with an efficient sequential algorithm (due to

Tomita et al. [143]) on a multicore machine with 32 physical cores and 1 TB RAM. For example,

on the Wikipedia network with around 1.8 million vertices, 36.5 million edges, and around 131.6

million maximal cliques, ParTTT achieves a 16.5x parallel speedup over the sequential algorithm,

and the optimized ParMCE achieves a 21.5x speedup, and completed in approximately two minutes.

In contrast, prior shared-memory parallel algorithms for MCE [158, 45, 87] failed to handle the

input graphs that we considered, and either ran out of memory ([158, 87]) or did not complete in

5 hours ([45]).

www.manaraa.com

16

On dynamic graphs, we observe that ParIMCE gives a 3x-19x speedup over a state-of-the-art

sequential algorithm IMCE [38] on a multicore machine with 32 cores. Interestingly, the speedup of

the parallel algorithm increases with the magnitude of change in the set of maximal cliques – the

“harder” the dynamic enumeration task is, the larger is the speedup obtained. For example, on

a dense graph such as Ca-Cit-HepTh (with original graph density of 0.01), we get approximately a

19x speedup over the sequential IMCE. More details are presented in Section 5.5.

Techniques for Load Balancing: Our parallel methods can effectively balance the load in solving

parallel MCE. As shown in Fig. 5.1, “natural” sub-problems of MCE are highly imbalanced and

therefore load balancing is not trivial. In our algorithms, sub-problems of MCE are broken down

into smaller sub-problems, according to the search used by the sequential algorithm [143], and this

process continues recursively. As a result, the final sub-problem that is solved in a single task is

not so large as to create load imbalances. Our experiments demonstrate that the recursive splitting

of sub-problems in MCE is essential for achieving a high speedup over existing algorithms [143].

In order to efficiently assign these (dynamically created) tasks to threads at runtime, we utilize a

work stealing scheduler [19, 20].

2.3 Incremental Maintenance of Maximal Bicliques

In this work we design incremental algorithms for maintaining the set of maximal bicliques in

a bipartite graph when the graph keeps changing over time due to addition of edges. Similar to

the maintenance of maximal cliques, we maintain the set of maximal bicliques by maintaining the

set of new maximal bicliques and the set of subsumed bicliques separately. We make the following

contributions towards the maintenance of maximal bicliques in a bipartite graph:

Magnitude of Change: Let g(n) denote the maximum number of maximal bicliques possible

in an n vertex bipartite graph. A result due to Prisner [117] shows that g(n) ≤ 2n/2, where equality

occurs when n is even. We show that the change in the number of maximal bicliques when a single

edge is added to the graph can be as large as 3g(n − 2) ≈ 1.5 × 2n/2, which is exponential in the

number of vertices in the graph. This shows that the addition of even a single edge to the graph

www.manaraa.com

17

can lead to a large change in the set of maximal bicliques in the graph. We further show that this

bound is tight for the case of the addition of a single edge – the largest possible change in the set

of maximal bicliques upon adding a single edge is 3g(n− 2). For the case when more edges can be

added to the graph, it is easy to see that the maximum possible change is no larger than 2g(n).

Enumeration Algorithm: From our analysis, it is clear that the magnitude of change in the set

of maximal bicliques in the graph can be exponential in n in the worst case. On the flip side, the

magnitude of change can be as small as 1 – for example, consider the case when a newly arriving

edge connects two isolated vertices in the graph. Thus, there is a wide range of values the magnitude

of change can take. When the magnitude of change is very large, an algorithm that enumerates the

change must inevitably pay a large cost, if only to enumerate the change. On the other hand, when

the magnitude of change is small, it will ideally pay a smaller cost. This motivates our search for an

algorithm whose computational cost for enumerating the change is proportional to the magnitude

of the change in the set of maximal bicliques.

We present an incremental algorithm, DynamicBC, for enumerating the change in the set of

maximal bicliques when a set of edges H are added to the bipartite graph G. DynamicBC has

two parts, NewBC, for enumerating new maximal bicliques, and SubBC, for enumerating subsumed

maximal bicliques. When a batch of new edgesH of size ρ is added to the graph, the time complexity

of NewBC for enumerating Υnew, the set of new maximal bicliques, is O(∆2ρ|Υnew|) where ∆ is the

maximum degree of the graph after update. The time complexity of SubBC for enumerating Υdel,

the set of subsumed bicliques, is O(2ρ|Υnew|). Note that when ρ is a constant, the time complexity

of enumerating the change is O(∆2|Υnew|), which is linear in the number of bicliques that are

output, times a factor related to the size of the graph. To the best of our knowledge, these are the

first change-sensitive algorithms for maintaining maximal bicliques in a dynamic graph.

Experimental Evaluation: We present an empirical evaluation of DynamicBC on real bipartite

graphs with million of nodes and compare our algorithm with baseline approaches. Our results

show that the performance of DynamicBC is many orders of magnitude faster than directly applying

www.manaraa.com

18

a static algorithm (BaselineBC) and many times faster than an improved baseline we devised

(BaselineBC∗). For example, on the lastfm-song-init graph, DynamicBC took about 93 sec. for

computing the change due to addition of 625 batches each of size 100, whereas BaselineBC took

about 7, 920 sec. and BaselineBC∗ about 1, 740 sec.

2.4 Parallel Maximal Biclique Enumeration on Static Bipartite Graphs

In this work we design parallel algorithms for maximal biclique enumeration from a static bi-

partite graph. We are motivated by the fact that the runtime of the state-of-the-art sequential

algorithms for MBE remain almost the same if we increase the number of processor cores. Also,

it takes large amount of time to enumerate all the maximal bicliques in a large graph. For ex-

ample, it takes more than 8 hours to enumerate around 54 million maximal bicliques from a real

world bipartite graph called BookCrossing with around 445 thousand vertices and 1.1 million edges.

Clearly, the sequential algorithm cannot utilize the power of multiple cores in a multicore comput-

ing system. Therefore, we develop work-efficient parallel algorithms based on the state-of-the-art

sequential algorithm using parallel techniques. Our contributions are the following:

Efficient Parallel Algorithm: We present a shared-memory parallel algorithm for MBE ParLMBC

that takes as input a bipartite graph G and enumerates all maximal bicliques in G. ParLMBC is

an efficient parallelization of MineLMBC [92] that parallelizes different steps in the algorithm. Our

analysis of ParLMBC using a work-depth model of computation [18] shows that ParLMBC is work-

efficient, i.e. its total work across all processors is of the same order as the work of the sequential

algorithm MineLMBC. We also show that ParLMBC has a low parallel depth.

Optimized Parallel Algorithm: We design another shared memory parallel algorithm ParMBE

that builds on ParLMBC and yields substantially improved practical performance. At a high level,

ParMBE constructs a cluster (subgraph) for each vertex v using vertices in the 2-neighborhood of v,

and applies ParLMBC within each cluster, in parallel. This brings in a different level of parallelization

at the level of subgraphs, in addition to ParLMBC. This approach significantly reduces the parallel

enumeration time compared with ParLMBC because the computational cost for enumerating the

www.manaraa.com

19

bicliques is directly related to the size of the candidate set and the adjacency vertex set (vertices

adjacent to the vertices in the candidate set) which is much smaller in each subproblem in ParMBE

than that of executing ParLMBC directly on the input graph. Thus, the size of the problem instances

is reduced in ParMBE while keeping the total number of recursive calls same as that of ParLMBC as

each recursive call is followed by the generation of a maximal biclique. If we simply enumerate all

maximal bicliques from each subproblem then a maximal biclique will be enumerated more than

once. We prevent this by assuming an ordering of the vertices using a rank function so that a highly

ranked vertex will contain more maximal bicliques than a low ranked vertex. Clearly, there will be

imbalance of the load if we enumerate the maximal bicliques from the subproblems corresponding to

the highly ranked vertices. We distribute the load by delegating the task of enumerating maximal

bicliques to the vertices adjacent to a highly ranked vertex. For doing this, we create subproblems

in a manner that all maximal bicliques enumerated from the subproblem for vertex w will have w as

the least ranked vertex. However, computing the exact rank of the vertices beforehand is difficult

and therefore we heuristically consider degree of a vertex for computing the rank. This way, in our

optimized algorithm ParMBE we ensure (1) non duplicate enumeration of all maximal bicliques and

(2) load distribution.

Experimental Evaluation: We empirically evaluated all our algorithms and the experiment shows

that on a 16 core machine, ParLMBC yields a 4x-7.5x parallel speedup over MineLMBC. On the

other hand, ParMBE yields a 8x-8500x parallel speedup when compared with MineLMBC, which

was surprising. We found that the size of each subproblem is reduced in a large extent

in ParMBE and as a result the time taken for pruning the search space is reduced

considerably with respect to the algorithms MineLMBC and ParLMBC. We also show that the

parallel speedup of ParMBE is almost a linear function of the number of processors.

Improved Sequential Algorithm: With the parallel algorithm ParMBE yielding super-linear

speedups compared to MineLMBC, it is possible that there is room for improvement in MineLMBC. We

design a better sequential algorithm FMBE, which executes parallel portions of ParMBE sequentially,

one after another. On some of the input graphs, FMBE is an order of magnitude faster than MineLMBC,

www.manaraa.com

20

and on each graph, FMBE runs at least as fast as MineLMBC. On a 16 core machine, ParMBE still

provides up to 10x speedup when compared with FMBE.

www.manaraa.com

21

CHAPTER 3. PREVIOUS WORKS

Here we will discuss about the prior and related works on the dense structures in large static

and dynamic graphs. We discuss on the fundamental dense structures such as maximal cliques and

maximal bicliques in detail as this thesis is about the enumeration and maintenance of these two

fundamental dense structures and then we will discuss briefly on the other dense structures such

as densest subgraph, k-core etc.

3.1 Maximal Cliques

In this section we will discuss about the prior works on the sequential and parallel algorithms

for solving Maximal Clique Enumeration (MCE) problem on both static and dynamic graphs.

3.1.1 Sequential Algorithms

On Static Graph: There is substantial prior work on enumerating maximal cliques in a static

graph, starting from the algorithm based on depth-first-search due to Bron and Kerbosch [23]. A

significant improvement to [23] is presented in Tomita et al. [143], leading to worst-case optimal time

complexity O(3n/3) for an n vertex graph [104]. Other work on refinements of [143, 23] include [78],

who presents several strategies for pivot selection to enhance the algorithm in [23], and a fixed

parameter tractable algorithm parameterized by the graph degeneracy [49, 50].

There is a class of algorithms for enumerating structures (such as maximal cliques) in a static

graph whose time complexity is proportional to the size of the output – such algorithms are called

“output-sensitive” algorithms. Many output-sensitive structure enumeration algorithms for static

graphs, including [148, 32, 97], can be seen as instances of a general technique called “reverse

search” [11]. The current best bound on the time complexity of output-sensitive maximal clique

enumeration on a dense graph G = (V,E) is due to [97] which runs with O(M(n)) time delay (the in-

www.manaraa.com

22

terval between outputting two maximal cliques), where M(n) is the time complexity for multiplying

two n× n matrices, which is O(n2.376). Further work in this direction includes [81] and [71], which

consider the enumeration of maximal independent sets in lexicographic order, [30], which considers

the external memory model, and [107], which considers uncertain graphs. Extensions to parallel

frameworks such as MapReduce, MPI, or Shared Memory are presented in [137, 106, 37]. Note that

there is a long line of prior work on finding the maximum clique in a graph. e.g. [141, 142, 144]

on finding a maximum clique in a graph. However, these algorithms are not directly useful to

our work on enumerating maximal cliques, since the maximum clique is a related, but different

concept. While every maximum clique is a maximal clique, there maybe maximal cliques that are

not maximum.

On Dynamic Graph: In [135], the authors present algorithms for tracking new and subsumed

maximal cliques in a dynamic graph when a single edge is added to the graph. These algorithms

are not proved to be change-sensitive, even for a single edge. The algorithm due to Stix [135] for

enumerating new maximal cliques needs to consider (and filter out) maximal cliques in the original

graph that remain unaffected due to addition of new edge. This can be wasteful, in terms of update

time. Hence, such an algorithm cannot be change-sensitive. For example, consider the case of a

graph growing from an empty graph on 10 vertices to a clique on 10 vertices. Only one new maximal

clique has been formed by this batch, but numerous maximal cliques arise during intermediate steps

– if all these are enumerated, then the time complexity of enumeration is inherently large, even

though the magnitude of change is small.

Ottosen and Vomlel [112] present an algorithm to enumerate the change in set of maximal

cliques, based on running a maximal clique enumeration algorithm on a smaller graph. Their

algorithm supports addition of a set of edges all at once. In contrast with our work, there are no

provable performance bounds for this algorithm. Another difference is that the algorithm of [112]

may not maintain the exact change in the set of maximal cliques, in certain cases, while our

algorithms can maintain the change in the set of maximal cliques exactly. Sun et al. [136] present

an algorithm for enumerating the change in set of maximal cliques, based on iterating over the set

www.manaraa.com

23

of maximal cliques of the original graph to derive the set of maximal cliques of the updated graph.

This need to iterate over currently existing cliques makes the algorithm expensive, especially for

cases when the set of maximal cliques does not change significantly due to the update in edge

set. Prior algorithms for maximal clique enumeration on a dynamic graph are not proved to be

change-sensitive, and do not provide a provable bound on the cost to enumerate the change, or on

the magnitude of the change.

3.1.2 Parallel Algorithms

There are multiple prior works on parallel algorithms for MCE [158, 44, 151, 129, 95, 138]. We

first discuss shared memory algorithms and then distributed memory algorithms. Zhang et al. [158]

presented a shared memory parallel algorithm based on the sequential algorithm due to Kose et

al. [81]. This algorithm computes maximal cliques in an iterative manner, and in each iteration,

it maintains a set of cliques that are not necessarily maximal and for each such clique, maintains

the set of vertices that can be added to form larger cliques. This algorithm does not provide a

theoretical guarantee on the runtime and suffers for large memory requirement. Du et al. [44]

present a output-sensitive shared-memory parallel algorithm for MCE, but their algorithm suffers

from poor load balancing as also pointed out by Schmidt et al. [129]. Lessley et al. [87] present a

shared memory parallel algorithm that generates maximal cliques using an iterative method, where

in each iteration, cliques of size (k − 1) are extended to cliques of size k. The algorithm of [87] is

memory-intensive, since it needs to store a number of intermediate non-maximal cliques in each

iteration. Note that the number of non-maximal cliques may be far higher than the number of

maximal cliques that are finally emitted, and a number of distinct non-maximal cliques may finally

lead to a single maximal clique. In the extreme case, a complete graph on n vertices has (2n − 1)

non-maximal cliques, and only a single maximal clique. We present a comparison of our algorithm

with [87, 158, 44] in later sections.

www.manaraa.com

24

Distributed memory parallel algorithms for MCE include works due to Wu et al. [151], designed

for the MapReduce framework, Lu et al. [95], which is based on the sequential algorithm due to

Tsukiyama et al. [148], and Svendsen et al. [138].

All the works discussed above are the parallel and distributed algorithms for solving MCE

on static graph. To the best of our knowledge, there is no prior work on the parallel

algorithms for the maintenance of the maximal cliques in a dynamic graph.

3.2 Maximal Bicliques

3.2.1 Sequential Algorithms

On Static Graphs: There has been substantial prior work on enumerating maximal bicliques

from a static graph. Alexe et al. [6] present an algorithm for MBE from a static graph based on

the consensus method, whose time complexity is proportional to the size of the output (number of

maximal bicliques in the graph) - termed as an output-sensitive algorithm. Liu et al. [92] present

an algorithm for MBE based on depth-first-search (DFS). Damaschke [36] present an algorithm

for bipartite graphs with a skewed degree distribution. Gély et al. [55] present an algorithm for

MBE through a reduction to maximal clique enumeration (MCE). However, in their work, the

number of edges in the graph used for enumeration increases significantly compared to the original

graph. Makino & Uno [97] present an algorithm for MBE based on matrix multiplication, which

provides the current best time complexity for dense graphs. Eppstein [48] presented a linear time

algorithm for MBE when the input graph has bounded arboricity. Other works on sequential

algorithms for MBE and MCE on a static graph include [40, 41, 143, 107], and on parallel algorithms

include [105, 106, 153, 137]. Li et al. [88] show a correspondence between closed itemsets in a

transactional database and maximal bicliques in an appropriately defined graph.

On Dynamic Graphs: There have been some prior works related to maintenance of dense struc-

tures similar to maximal bicliques in dynamic graphs. Kumar et al. [82] define an (i, j)-core which

is a biclique with i vertices in one partition and j vertices in another partition, and present a

dynamic algorithm for extracting non-overlapping sets of (i, j)-cores for interesting communities.

www.manaraa.com

25

To the best of our knowledge, there is no prior work on the maintenance of maximal

bicliques in a dynamic graph. In this thesis, we first propose an incremental algorithm

for the maintenance of maximal bicliques in a dynamic bipartite graph.

3.2.2 Parallel Algorithms

Nataraj and Selvan [111] first propose a shared memory parallel algorithm (not mentioned

clearly in the literature) for enumerating all maximal bicliques from a static graph. However, this

work neither explore the load balancing nor the work efficiency of the enumeration process.

3.3 Other Dense Structures

3.3.1 Algorithms for Static Graphs

k-core: Batagelj and Zaversnik [14] first proposed an O(m) (m is the number of edges in the

graph) time algorithm for core decomposition which is to identify the core number of every vertex

in the graph using a bottom-up approach where vertices are processed from smaller degree to larger

degree. This algorithm cannot handle the graphs larger than the size of the main memory. Cheng

et al. [29] address this problem and develop an external memory algorithm for core decomposition

using a top-down approach where the vertices with large degree are processed first. Following this

work, Khaouid et al. [75] propose efficient implementations of the prior algorithms harnessing the

power of GraphChi [84] for vertex centric computation and the power of Webgraph [21] for graph

compression. Montresor et al. [103] first propose a distributed memory parallel algorithm for k-core

decomposition using a message passing model that takes O(n) rounds to complete the computation

where n is the number of vertices in the network. Following this work, Dasari et al. [39] propose a

technique to parallelize the distributed algorithm in a shared memory multicore processors. Kabir

and Madduri [73] propose another shared memory parallel algorithm improving upon the prior

shared memory parallel algorithm.

www.manaraa.com

26

k-truss: Cohen [34] first proposes a sequential algorithm for truss decomposition and following

that a MapReduce algorithm [35] based on parallel triangle counting technique. Following these

works, Wang and Cheng [150] propose an efficient external memory algorithm for graphs that can-

not fit in the main memory. Quick et al. [118] proposed a distributed memory truss decomposition

algorithm based on vertex centric computation. Following this work, Shao et al. [131] propose

a more efficient distributed parallel algorithm that substantially improve the prior work. In this

work, the authors propose a construct called triangle complete subgraph and based on this con-

struct the truss decomposition is carried out through local computation at each computing node.

Kabir and Madduri [74] propose a shared memory truss decomposition algorithm by performing a

level-synchronous parallelization of the algorithm by Wang and Cheng [150]. Recently, Sariyüce et

al. [127] propose an efficient generalized algorithm based on iterative h-index computation [96] that

guarantees exact truss decomposition along with core decomposition and nucleus decomposition.

quasi-clique: Abello et al. [5] first proposed a heuristic algorithm for finding density based large

quasi clique and developed an external memory algorithm. Pei et al. [116] propose a heuristic

algorithm for extracting cross graph degree based quasi cliques which is defined on the same vertex

set but different γ values across different graphs (with same vertex set). Zeng et al. [156] consider

discovering frequent quasi-cliques that occur in many graphs with the same γ value. In their work,

the authors consider degree based quasi clique and develops efficient pruning techniques for reducing

the futile search paths as much as possible. Following this work, Zhang et al. [160] parallelize the

algorithm using a message passing model. Liu and Wong [93] first propose exact algorithm for

enumerating degree based all maximal quasi cliques followed by several pruning techniques that

they use in designing the algorithm. Uno [149] considers density based definition of quasi-clique

and designs an exact enumeration algorithm for all quasi-cliques. Additionally, the author proved

that it is NP-complete to find a quasi-clique containing a give set of vertices. Khosraviani and

Sharifi [76] propose a MapReduce algorithm for degree based quasi-clique enumeration combining

the diameter based pruning strategies from the work of Pei et al. [116] and degree based pruning

www.manaraa.com

27

strategies from the work of Liu and Wong [93]. Tsourakakis et al. [146] considers density based

quasi-clique as in [149] and develop a greedy approximation algorithm by reducing the quasi-clique

search problem into an optimization problem.

Works on other dense structures on static graphs include the works on quasi-biclique [100, 154,

132, 89, 133], densest subgraph [58, 26, 9, 77], densest bipartite subgraph [8, 13], triangle densest

subgraph [147], k-clique densest subgraph [145, 101], (p, q)-biclique densest subgraph [101] etc.

3.3.2 Algorithms for Dynamic Graphs

k-core: Miorand and Pellegrini [99] first propose the maintenance of the core number of each vertex

when the graph evolves over time where the authors apply standard k-core decomposition algorithm

on different snapshots of the time evolving graph. Li et al. [90] improves upon the previous work

by identifying a small set of vertices to consider on each update of the graph (by addition and

deletion of the edges) for the maintenance of the core numbers and proposed an efficient algorithm.

Independently, Sariyüce et al. [125, 126] propose another incremental algorithm for maintaining

the core values of the vertices through identifying a small subgraph where that contains all the

nodes whose core values to be updated when a new edge is added or an old edge is deleted to/from

the graph. Zhang et al. [161] improve upon the prior core maintenance algorithm by identifying

the deficiency in the prior algorithm and proposing an efficient algorithm based upon the idea of

maintaining an ordering of the vertices when the graph is updated for updating the core value

of the vertices and experimentally show the significant improvement over the prior work. Jin et

al. [69] propose an incremental parallel algorithm for the core maintenance inspired by the single

edge addition/deletion case as in [90]. Most recently, Esfandiari et al. [52] propose a distributed

streaming algorithm for the maintenance of approximate core decomposition based on a sketching

technique.

k-truss: Zhou et al. [162] studied the problem of truss maintenance on dynamic network in when

the graph evolves due to addition/deletion of the edges.

www.manaraa.com

28

Works on other dense structures on dynamic graph includes dynamic and streaming algorithms

on finding densest subgraph [12, 47, 98, 16, 110].

www.manaraa.com

29

CHAPTER 4. MAINTENANCE OF MAXIMAL CLIQUES

4.1 Introduction

Most current methods for identifying dense subgraphs are designed for a static graph. Suppose

we used a method designed for a static graph to handle a dynamic graph. If the input graph changes

slightly, say, by the addition of a few edges, it is necessary to enumerate all dense subgraphs all over

again, even though the set of dense subgraphs may have only changed slightly due to the addition of

the new edges. This repeated and redundant work is a source of serious inefficiency, so that methods

designed for static graphs are not applicable to a graph that is changing frequently. Different

methods are needed, which can handle changes to a graph more efficiently. From a foundational

perspective, identifying dense structures in a graph has been a problem of long-standing interest in

computer science, but even basic questions remain unanswered on dynamic graphs.

We consider the maintenance of the set of maximal cliques in a dynamic graph. Many applica-

tions benefit from efficient maintenance of maximal cliques in a dynamic graph, such as described in

the work of Chateau et al. [27] on maintaining common intervals among genomes, Duan et al. [46]

on incremental k-clique clustering, Hussain et al. [67] on maintaining the maximum range-sum

query over a point stream.

Suppose that we started from a graph G = (V,E) and the state of the graph changed to

G′ = (V,E ∪H) through an addition of a set of new edges H to the set of edges in the graph G.

See Figure 4.1 for an example. Let C(G) denote the set of maximal cliques in G and Λnew(G,G′) =

C(G′) \ C(G) denote the set of maximal cliques that were newly formed when going from G to G′,

and Λdel(G,G′) = C(G) \ C(G′) denote the set of cliques that were maximal in G but are no longer

maximal in G′. Let Λ(G,G′) = Λnew(G,G′) ∪ Λdel(G,G′) denote the symmetric difference of C(G)

and C(G′). We ask the following questions:

www.manaraa.com

30

Figure 4.1: Change in maximal cliques due to addition of edges. On the left is the initial graph

G with maximal cliques {1, 2, 5} and {2, 3, 4}; On the middle is the graph G′ after adding edges

(3, 5) and (4, 5) to G resulting in new maximal clique {2, 3, 4, 5} and only subsumed maximal clique

{2, 3, 4}; On the right is the graph G′′ after adding edges (1, 3) and (1, 4) to G′ resulting in new

maximal clique {1, 2, 3, 4, 5} and subsumed cliques {1, 2, 5} and {2, 3, 4, 5}.

– How large can the size of Λ(G,G′) be? To systematically study the problem of maintaining

maximal cliques in a dynamic graph, we first need to understand the magnitude of change in the

set of maximal cliques.

– What are efficient methods to compute Λ(G,G′)? Can we compute Λ(G,G′) quickly in cases

when the size of Λ(G,G′) is small, and take longer when it is large? Do these methods scale to

large graphs?

Roadmap: We present preliminaries in Section 4.2, followed by bounds on magnitude of change in

Section 4.3, algorithms for enumerating the change in Section 4.4, discussions in Section 4.5, and

experimental results in Section 4.6.

4.2 Preliminaries

We consider a simple undirected graph without self loops or multiple edges. For graph G, let

V (G) denote the set of vertices in G and E(G) denote the set of edges in G. Let n denote the size

of V (G), and m denote the size of E(G). For vertex u ∈ V (G), let ΓG(u) denote the set of vertices

adjacent to u in G. When the graph G is clear from the context, we use Γ(u) to mean ΓG(u). For

edge e = (u, v) ∈ E(G), let G−e denote the graph obtained by deleting e from E(G), but retaining

vertices u and v in V (G). Similarly, let G+e denote the graph obtained by adding edge e to E(G).

www.manaraa.com

31

For edge set H, let G + H (G −H) denote the graph obtained by adding (subtracting) all edges

in H to (from) E(G). Let ∆(G) denote the maximum degree of a vertex in G. When the context

is clear, we use ∆ to mean ∆(G). For vertex v ∈ V (G), let G− v denote the induced subgraph of

G on the vertex set V (G)− {v}, i.e. the graph obtained from G by deleting v and all its incident

edges. Let Cv(G) denote the set of maximal cliques in G containing v.

Algorithm TTT: The algorithm due to Tomita, Tanaka, and Takahashi [143], which we call TTT, is

a recursive backtracking-based algorithm for enumerating all maximal cliques in a static undirected

graph, with a worst-case time complexity of O(3n/3) where n is the number of vertices in the graph.

In practice, this is one of the most efficient sequential algorithms for MCE.

In any recursive call, TTT maintains three disjoint sets of vertices K, cand, and fini where K

is a candidate clique to be extended, cand is the set of vertices that can be used to extend K, and

fini is the set of vertices that are adjacent to K, but need not be used to extend K (these are

being explored along other search paths). Each recursive call iterates over vertices from cand and

in each iteration, a vertex q ∈ cand is added to K and a new recursive call is made with parameters

K ∪ {q}, candq, and finiq for generating all maximal cliques of G that extend K ∪ {q} but do

not contain any vertices from finiq. The sets candq and finiq can only contain vertices that are

adjacent to all vertices in K ∪ {q}. The clique K is a maximal clique when both cand and fini

are empty.

The ingredient that makes TTT different from the algorithm due to Bron and Kerbosch [23] is

the use of a “pivot” where a vertex u ∈ cand∪fini is selected that maximizes |cand∩Γ(u)|. Once

the pivot u is computed, it is sufficient to iterate over all the vertices of cand \ Γ(u), instead of

iterating over all vertices of cand. The pseudo code of TTT is presented in Algorithm 1. For the

initial call, K and fini are initialized to an empty set, cand is the set of all vertices of G.

Definition 1 (Change-Sensitive Algorithm). An algorithm for a property P on a dynamic graph is

said to be change-sensitive if the time complexity of enumerating the change in P due to a change

www.manaraa.com

32

Algorithm 1: TTT(G,K, cand, fini)

Input: G - The input graph

K - a clique to extend,

cand - Set of vertices that can be used extend K,

fini - Set of vertices that have been used to extend K

Output: Set of all maximal cliques of G containing K and vertices from cand but not

containing any vertex from fini

1 if (cand = ∅) & (fini = ∅) then

2 Output K and return

3 pivot← (u ∈ cand ∪ fini) such that u maximizes the size of cand ∩ ΓG(u)

4 ext← cand− ΓG(pivot)

5 for q ∈ ext do

6 Kq ← K ∪ {q}
7 candq ← cand ∩ ΓG(q)

8 finiq ← fini ∩ ΓG(q)

9 cand← cand− {q}
10 fini← fini ∪ {q}
11 TTT(G,Kq, candq, finiq)

in the set of edges of the graph is linear in the magnitude of change (in P), and polynomial in the

the size of the input graph, and the number of edges added to or deleted from the graph.

By the phrase “magnitude of change”, we mean the number of structures that have changed

with respect to the property P . Note that the notion of a change-sensitive algorithm for a dynamic

graph is similar to the notion of an “output-sensitive” algorithm for a static graph, whose time

complexity depends on the size of the output and the size of the graph.

An algorithm for a dynamic graph is called incremental if it can efficiently handle insertion of

edges, decremental if it can handle deletion of edges, and fully dynamic if it can handle both inser-

tions and deletions. For example, a parallel algorithm due to Simsiri et al. [134] is an incremental

algorithm for graph connectivity, an algorithm due to Thorup [140] is a decremental algorithm, and

one due to Wulff-Nilsen [152] is a fully dynamic algorithm. We present change-sensitive incremen-

tal and decremental algorithms for maximal clique maintenance. Our fully dynamic algorithm for

maximal clique maintenance is however not change-sensitive.

www.manaraa.com

33

Results for Static Graphs: We present some known results about maximal cliques on static

graphs. Nearly 50 years ago, Moon and Moser [104] considered the question: “what is the maximum

number of maximal cliques that can be present in an undirected graph on n vertices”, and gave the

following answer. Let f(n) denote the maximum possible number of maximal cliques in a graph

on n vertices. A graph on n vertices that achieves f(n) maximal cliques is called a “Moon-Moser”

graph.

Theorem 1 (Theorem 1, Moon and Moser, [104]).

f(n) = 3
n
3 if n mod 3 = 0

= 4 · 3
n−4
3 if n mod 3 = 1

= 2 · 3
n−2
3 if n mod 3 = 2

We use as a subroutine an output-sensitive algorithm for enumerating all maximal cliques within

a (static) graph, using time proportional to the number of maximal cliques. There are multiple

such algorithms, for example, due to Tsukiyama et al. [148], and due to Makino and Uno [97]. We

use the following result (Theorem 2) due to Chiba and Nishizeki since it provides one of the best

possible time complexity bounds for general graphs. Better results are possible for dense graphs [97]

and our algorithm can use other methods as a subroutine also. Let the arboricity of a graph be

defined as the minimum number of forests into which the edges of the graph can be partitioned.

The arboricity of a graph is no more than the maximum vertex degree, but could be significantly

smaller [32].

Theorem 2 (Chiba and Nishizeki, [32]). There is an algorithm MCE(G) that enumerates all maximal

cliques in graph G in time O(αmµ) where µ is the number of maximal cliques in G, and α and

m are respectively the arboricity of G and the number of edges in G. The space complexity of the

algorithm is O(n+m), where n is the number of vertices in G.

Note that the space complexity excludes the size of the output, which may be much larger.

www.manaraa.com

34

4.3 Magnitude of Change

From prior work [104], the maximum number of maximal cliques in an n-vertex graph, denoted

by f(n) is known (see Theorem 1). The result of [104] is relevant for static graphs. In the case of

a dynamic graph, a different question is more relevant: what is the maximum change in the set of

maximal cliques, that can result from the addition of edges to the graph? This will give us a bound

on the worst case complexity of enumerating the change in the set of maximal cliques.

4.3.1 Maximum Possible Change in Maximal Cliques

We consider the maximum change in the set of maximal cliques upon the addition of edges to

the graph. For an integer n, let λ(n) be the maximum size of Λ(G,G+H) taken over all possible

n vertex graphs G and edge sets H. We present the following result with nearly tight bounds on

the value of λ(n). Interestingly, our results show that it is possible to change the set of maximal

cliques by as much as ≈ 2 · 3n/3 by the addition of only a few edges to the graph.

Theorem 3.

16

9
f(n) ≤ λ(n) < 2f(n) if (n mod 3) = 0

λ(n) = 2f(n) if (n mod 3) = 1

11

6
f(n) ≤ λ(n) < 2f(n) if (n mod 3) = 2

Proof. We first note that λ(n) ≤ 2f(n) for any integer n. To see this, note that for any graph G on n

vertices and edge set H, it must be true from Theorem 1 that |C(G)| ≤ f(n) and |C(G+H)| ≤ f(n).

Since |Λnew(G,G + H)| ≤ |C(G + H)| and |Λdel(G,G + H)| ≤ |C(G)|, we have |Λ(G,G + H)| =

|Λnew(G,G+H)|+ |Λdel(G,G+H)| ≤ |C(G)|+ |C(G+H)| ≤ 2f(n).

The result of Moon and Moser [104] states that for n ≥ 2, there is only one graph Hn on n

vertices (subject to isomorphism) that has f(n) maximal cliques. We show below that there is an

error in this result for the case (n mod 3) = 1. Note that the result is still true in the cases (n

www.manaraa.com

35

mod 3) equals 0 or 2. Thus for the cases where (n mod 3) is 0 or 2, adding or deleting edges from

Hn leads to a graph with fewer than f(n) maximal cliques, so that we can never achieve a change

of 2f(n) maximal cliques. Thus we have that for (n mod 3) equal to 0 or 2, λ(n) is strictly less

than 2f(n). The case of (n mod 3) = 1 is discussed separately (see Observation 1 below).

Next, we show that there exists a graph G on n vertices and an edge set H such that the size

of Λ(G,G + H) is large. See Figure 4.2 for an example. Graph G is constructed on n vertices as

follows. Let ε > 3 be an integer. Choose ε vertices in V (G) into set V1. Let V2 = V \ V1. Edges of

G are constructed as follows.

• Each vertex in V1 is connected to each vertex in V2.

• Edges are added among vertices of V2 to make the induced subgraph on V2 a Moon-Moser

graph on (n − ε) vertices. Let G2 denote this induced subgraph on V2, which has f(n − ε)

maximal cliques.

• There are no edges among vertices of V1 in G.

It is clear that for each maximal clique c in G2 and vertex v ∈ V1, there is a maximal clique in

G by adding v to c. Thus the number of maximal cliques in G is |V1| · |C(G2)|. Hence we have

|C(G)| = ε · f(n− ε) (4.1)

We add edge set H to the graph as follows. H consists of edges connecting vertices in V1, to

form a Moon-Moser graph on ε vertices. Let G′ = G+H. We note that C(G) and C(G′) are disjoint

sets. To see this, note that each maximal clique in G contains exactly one vertex from V1, since no

two vertices in V1 are connected to each other in G. On the other hand, each maximal clique in G′

contains more than one vertex from V1, since each vertex v ∈ V1 is connected to at least one other

vertex in V1 in G′. Hence, Λ(G,G′) = C(G) ∪ C(G′), and

|Λ(G,G′)| = |C(G)|+ |C(G′)| (4.2)

To compute |C(G′)|, note that since each vertex in V1 is connected to each vertex in V2, for each

maximal clique in G′(V1) and each maximal clique in G′(V2), we have a unique maximal clique in

www.manaraa.com

36

Figure 4.2: A large change in set of maximal cliques when a few edges are added. The vertex set

is partitioned into V1 and V2. On the left is G, the original graph on n vertices where each vertex

in V1 is connected to each vertex in V2, and V1 is an independent set. In G, the induced subgraph

G2 on vertex set V2 forms a Moon-Moser graph. On the right is G′, the graph formed after adding

edge set H to G such that the induced subgraph on vertex set V1 becomes a Moon-Moser graph.

Let c be a clique in G2, and c′ a new clique in G′ formed among vertices in V1. Note that c ∪ {v}
was a maximal clique in G, and is now subsumed by a new maximal clique c ∪ c′.

G′. There are f(ε) maximal cliques in G′(V1) and f(n − ε) maximal cliques in G′(V2), and hence

we have

|C(G′)| = f(ε) · f(n− ε) (4.3)

Putting together Equations 4.1, 4.2, and 4.3 we get

|Λ(G,G′)| = (ε+ f(ε)) · f(n− ε) (4.4)

Let F (ε) = (ε + f(ε))f(n − ε). We compute the value of ε(> 3) at which F (ε) is maximized.

To do this, we consider three different cases depending on the value of (n mod 3), and omit the

calculations. If n mod 3 = 0, F (ε) is maximized at ε = 4 and the maximum value F (4) = 16
9 f(n).

If n mod 3 = 1, F (ε) is maximized at ε = 4 and F (4) = 2f(n). And finally if n mod 3 = 2, F (ε)

is maximized at ε = 5 and F (5) = 11
6 f(n). This completes the proof.

www.manaraa.com

37

Figure 4.3: On the left is Hn where each vertex v in Si is connected to each vertex u in Sj , i 6= j. On

the right is Gn which is formed from Hn by adding four edges to S0. For the case (n mod 3) = 1,

Hn and Gn are non-isomorphic graphs on n vertices, with f(n) maximal cliques each, showing a

counterexample to Theorem 2 of Moon and Moser [104].

4.3.2 An Error in a Result of Moon and Moser (1965)

Moon and Moser [104], in Theorem 2 of their paper, claim “For any n ≥ 2, if a graph G has

n nodes and f(n) cliques, then G must be equal to Hn”, where Hn is a specific graph, described

below. We found that this theorem is incorrect for the case when (n mod 3) = 1.

The error is as follows (see Figure 4.3). For (n mod 3) = 1, the graph Hn is constructed on

vertex set Vn = {1, 2, . . . , n} by taking vertices {1, 2, 3, 4} into a set S0 and dividing the remaining

vertices into groups of three, as sets S1, S2, . . . , Sn−4
3

. In graph Hn, edges are added between any

two vertices u, v such that u ∈ Si, v ∈ Sj and i 6= j. This graph Hn has 4 · 3
n−4
3 maximal cliques,

since we can make a maximal clique by choosing a vertex from S0 (4 ways), and one vertex from

each Si, i > 0 (3 ways for each such Si, i = 1 . . . (n− 4)/3).

Contradicting Theorem 2 in [104], we show there is another graph Gn that is different from Hn,

but still has the same number of maximal cliques. Gn is the same as Hn, except that the vertices

within S0 are connected by a cycle of length 4. In this case, we can still construct 4 · 3
n−4
3 maximal

cliques, since we can make a maximal clique by choosing two connected vertices in S0 (4 ways to

do this), and one vertex from each Si, i > 0 (3 ways for each such Si, i = 1 . . . (n− 4)/3).

www.manaraa.com

38

Observation 1. For the case (n mod 3) = 1, there are two distinct non-isomorphic graphs Hn

and Gn described above, that have 4 · 3
n−4
3 maximal cliques, which is the maximum possible. This

is a correction to Theorem 2 of Moon and Moser [104], which states that there is only one such

graph, Hn.

This observation enables us to have λ(n) = 2f(n) for the case (n mod 3) = 1. By starting with

graph Hn and by adding edges to make it Gn, we remove f(n) maximal cliques and introduce f(n)

maximal cliques, leading to a total change of 2f(n).

4.3.3 Bound on the size of change parameterized by max degree ∆ of G

Lemma 1. For any v ∈ V (G), |Cv(G)| ≤ f(∆) where ∆ is the maximum degree of G.

Proof. Each maximal clique c of G that contains v must be within the neighborhood of v and the

size of this neighborhood can be at most ∆. Thus, there can be at most f(∆) maximal cliques each

of which contains v.

Lemma 2. For any e ∈ E(G), the number of maximal cliques in G containing e is at most f(∆−1).

Proof. Suppose each of the vertices u and v of an edge e has degree ∆ and that u and v has the

same neighborhood. Thus the size of the neighborhood except u and v is ∆− 1. There can be at

most f(∆ − 1) maximal cliques within these vertices. Now when we add u and v to each of such

maximal clique, a new maximal clique will be formed that contains the edge e. Thus there can be

at most f(∆− 1) such maximal cliques.

Lemma 3. For a graph G on n vertices and edge e /∈ E(G), the size of Λ(G,G + e) can be no

larger than 3f(∆).

Proof. Proof by contradiction. Suppose there exists a graph G and edge e /∈ E(G) such that

|Λ(G,G+ e)| > 3f(∆). Then either |C(G+ e) \ C(G)| > f(∆) or |C(G) \ C(G+ e)| > 2f(∆).

Case 1: |C(G+ e) \ C(G)| > f(∆): This means that the total number of new maximal cliques

is more than f(∆). Assume that e = (u, v), U = ΓG(u) = ΓG(v), and |U | = ∆. Then there can be

www.manaraa.com

39

at most f(∆) maximal cliques in the subgraph of G induced by U . For each such maximal clique,

there will be a new maximal clique by adding e. Thus the number of new maximal cliques is at

most f(∆). A contradiction.

Case 2: |C(G)\C(G+e)| > 2f(∆): First note that each subsumed clique contains either u or v

but not the both. Next, the number of maximal cliques in G is at most f(∆) containing u and f(∆)

containing v. Thus the total number of subsumed cliques is at most 2f(∆). A contradiction.

Lemma 4. For any integer n > 2 there exists a graph G on n vertices with maximum degree ∆

and an edge e /∈ E(G) such that |Λ(G,G+ e)| = 3f(∆).

Proof. We use proof by construction. Let G be a graph on n vertices and X be a subset of V (G)

of size ∆. Also assume that X forms a Moon-Moser graph.Note that degree of every vertex of X

is at most ∆ − 1 within X. Fix two vertices u and v and connect from each of u and v to all the

vertices of X. Connect among rest of the vertices in such a way that the maximum degree in G

does not exceed ∆. This completes the construction of G.

First note that total number of maximal cliques containing u in G is f(∆) and total number

of maximal cliques containing v in G is f(∆). This is because, each maximal clique in X will be

maximal in G when adding u and when adding v. Total number of such maximal cliques is thus

2f(∆) that contains either u or v but not both.

Next note that total number of maximal cliques in G+ e containing e = (u, v) is f(∆). This is

because, each maximal clique in X becomes a new maximal clique in G + e when e is added and

these are all inclusive new maximal cliques because, neither u nor v is connected to any other vertex

in G except X. Also note that each maximal clique in G containing either u or v will becomes part

of a new maximal clique and thus will be subsumed.

Thus, |Λ(G,G+ e)| = |Cu(G)|+ |Cv(G)|+ f(∆) = 3f(∆).

4.3.4 Bound on the size of change parameterized by degeneracy d of G

Graph degeneracy is a measure of graph sparsity. Degeneracy is the smallest value d such that

every subgraph of G has at least a vertex of degree at most d. In other words, it is the maximum

www.manaraa.com

40

over minimum degrees of all the subgraphs of G. When the degeneracy d is known, the maximum

number of maximal cliques of d-degenerate graph is different from the moon-moser bound as shown

in [49]. First we prove a lower bound on |Λ(G,G+ e)| as follows:

Lemma 5. For any integer n > 2, there exists a graph G with n vertices and degeneracy d such

that |Λ(G,G+ e)| is at least 3(n− d)f(d− 2) where e /∈ E(G).

Proof. We prove by construction. Suppose there is a graphG with n vertices and V = {1, 2, 3, ..., n−

1, n}. Now assume that first n− d vertices (denote as set A) form an independent set, followed by

next (d− 2) vertices (denote as set B) that forms a moon-moser graph, followed by vertices n− 1

and n that are not connected but each is connected to the rest n−1 vertices. Each vertex in set A is

connected to each vertex in set B. Clearly, the degeneracy of G is d. Now there are (n−d)f(d− 2)

maximal cliques in G′ = G−{n− 1, n} and assume C(G′) denotes the set of maximal cliques in G′.

For each clique c′ in C(G′), we get two maximal cliques in G, once by adding n−1 to c′ and then by

adding n to c′. Thus, |C(G)| = 2(n− d)f(d− 2). When we add an edge e between n− 1 and n each

clique in C(G′) is extended by both n− 1 and n and becomes a maximal clique in G+ e. Note that

C(G) and C(G + e) are disjoint set. To see this, observe that each maximal clique in G contains

either n − 1 or n since n − 1 and n are not connected in G. On the other hand, each maximal

clique in G + e contains both n − 1 and n and |C(G + e)| = |C(G′)| = (n − d)f(d − 2). Hence,

Λ(G,G+ e) = C(G) ∪ C(G+ e) and |Λ(G,G+ e)| = |C(G)|+ |C(G+ e)| = 3(n− d)f(d− 2).

Next, we will prove an upper bound on |Λ(G,G + e)| in Lemma 10. For proving an upper

bound, we use the following results and some supporting lemmas in obtaining bound on the size of

change in our case:

Lemma 6 (Theorem 3 of [49]). Let d be a multiple of 3 and n ≥ d + 3. Then the largest possible

number of maximal cliques in an n-vertex graph with degeneracy d is (n− d)3
d
3 .

This result assumes that d is multiple of 3. However, we can generalize the bound that works

for any value of the degeneracy d as follows:

www.manaraa.com

41

Lemma 7. Let d be the degeneracy of an n vertex graph G. Then maximum number of maximal

cliques in G is (n− d)f(d).

Proof. Upper Bound: We will show that number of maximal cliques in a graph G with n vertices

and degeneracy d is no more than (n−d)f(d). For this, assume that there is a degeneracy ordering

of the vertices of G for which there are at most d neighbors of each vertex that come later in the

ordering. Consider first (n− d) vertices in this ordering and denote this set of vertices as S. Now,

each vertex in S is connected to at most d vertices in set V \S. Also, there are precisely d vertices

in the set S′ = V \ S. Now, the maximum possible number of maximal cliques formed using the

vertices in S′ is f(d). As each vertex in S is connected to at most d vertices in S′, each such vertex

can participate in at most f(d) maximal cliques. Thus, maximum number of maximal cliques in G

is (n− d)f(d).

Lower Bound: Next we will show that there exists a graph G with n vertices and degeneracy

d such that there are (n− d)f(d) maximal clique. We will show this using a construction. Assume

that vertices in S′ forms a moon-moser graph. Next, the vertex set S is an independent set and

each vertex in S is connected to all vertices in S′. This completes the construction of G. Note that,

number of maximal cliques in the induced subgraph with vertex subset S′ is f(d). Each maximal

clique in that subgraph together with each vertex in S forms a distinct maximal clique in G. Thus,

total number of maximal clique in G is |S|f(d) which is (n− d)f(d). This completes the proof.

Lemma 8. For any v ∈ V (G), |Cv(G)| ≤ (n− d− 1)f(d) where d is the degeneracy of the graph G

Proof. Suppose there is a vertex v such that v is connected to n − 1 vertices. Also, assume that

the degeneracy of G is d. Now, the degeneracy of G − v can be at most d. Now, the maximum

number of maximal cliques in G− v is (n−d−1)f(d). Each of these maximal clique when includes

v becomes a maximal clique in G. Thus maximum number of maximal cliques containing a vertex

is at most (n− d− 1)f(d).

Lemma 9. For any e ∈ E(G), the number of maximal cliques containing e is at most (n−d−2)f(d)

where d is the degeneracy of G.

www.manaraa.com

42

Proof. Suppose that e = (u, v) and each of u and v is connected to rest of the vertices of G. Also the

degeneracy of G−u−v can be at most d. Now, the maximum number of maximal cliques in G−u−v

is (n−d−2)f(d). Each of these maximal cliques, when includes u and v, becomes a maximal cliques

in G. Thus, maximum number of maximal cliques containing e is (n− d− 2)f(d).

Lemma 10. For a graph G on n vertices and edge e /∈ E(G), the size of Λ(G,G + e) can be no

larger than 3(n− d− 2)f(d) where d is the degeneracy of the graph G.

Proof. Proof by contradiction. Suppose there exists a graph G and an edge e /∈ E(G) such that

|Λ(G,G+e)| > 3(n−d−2)f(d). Then, either |C(G+e)\C(G)| > (n−d−2)f(d) or |C(G)\C(G+e)| >

2(n− d− 2)f(d).

Case 1: |C(G + e) \ C(G)| > (n − d − 2)f(d) : Assume that e = (u, v) and each of u and v are

connected to the rest n − 2 vertices of G. Note that the degeneracy of G − u − v is at most d.

So, maximum number of maximal cliques in G − u − v is (n − d − 2)f(d). When we add e, each

maximal clique in G − u − v together with u and v becomes a maximal clique in G and each of

these maximal clique contains e. Thus |C(G+ e) \ C(G)| ≤ (n− d− 2)f(d). A contradiction.

Case2: |C(G) \ C(G+ e)| > 2(n− d− 2)f(d) : Note that each maximal clique c ∈ C(G) \ C(G+ e)

must contain either u or v, but not both. Suppose that c contains u but not v. Then c must be

maximum clique in G − v. Using Lemma 8 we see that the number of maximal cliques in G − v

that contains a specific vertex u can be no more than (n−d−2)f(d); hence the number of possible

maximal cliques that contain u is no more than (n − d − 2)f(d). In a similar way, the number of

possible maximal cliques that contain v is at most (n− d− 2)f(d). Therefore, the total number of

maximal cliques in C(G) \ C(G+ e) is at most 2(n− d− 2)f(d). This is a contradiction.

4.4 Enumeration of Change in the Set of Maximal Cliques

In this section we present algorithms for enumerating the change in the set of maximal cliques.

In Section 4.4.1, we first present an algorithm with provable theoretical properties for enumerating

new maximal cliques that arise due to the addition of a batch of edges, followed by an algorithm

www.manaraa.com

43

with good practical performance in Section 4.4.2. In Section 4.4.3, we present an algorithm for

enumerating subsumed cliques due to the addition of new edges. We then consider the decremental

case where edges are deleted from the graph in Section 4.4.4. For graph G and edge set H, when the

context is clear, we use Λnew to mean Λnew(G,G+H) and similarly Λdel to mean Λdel(G,G+H).

4.4.1 Enumeration of New Maximal Cliques

When a set of edges H is added to the graph G, let G′ denote the graph G+H. One approach

to enumerating new cliques in G′ is to simply enumerate all cliques in G′ using an output-sensitive

algorithm such as [32], suppress cliques that were also present in G, and output the rest. The

above approach is not change-sensitive. To see why, consider a case when the initial graph G is

the union of a Moon-Moser graph on (n− 3) vertices, along with three isolated vertices a, b, and c.

Suppose three edges are added in H so that vertices {a, b, c} form a triangle. In going from graph

G to G + H, the set of maximal cliques has changed as follows: A new clique {a, b, c} has been

formed and three existing (trivial) cliques {a}, {b}, and {c} have been subsumed. Following the

above approach, all cliques in G and in G + H are enumerated, which has a cost of Ω(3
n
3), since

there are Θ(3
n
3) cliques in G and in G + H. The size of change is small (a constant), while the

cost of enumeration is very large (exponential in the number of vertices). Approaches that involve

enumerating maximal cliques in a certain graph, followed by suppressing cliques that do not belong

to Λnew, run the risk of sometimes having to suppress most of the cliques that were enumerated,

and such approaches will not be change-sensitive.

In the following, we present a simple approach that leads to a change-sensitive algorithm for new

cliques. At its core, our algorithm constructs a set of subgraphs of G+H such that each maximal

clique in any of these subgraphs is a new maximal clique, i.e. belongs to Λnew(G,G′). Further,

each element of Λnew(G,G′) is a maximal clique in one of these subgraphs. This construction

allows the algorithm to directly output cliques from Λnew(G,G′), without enumerating cliques that

do not belong to Λnew(G,G′). This can form the basis of a change-sensitive algorithm. There

www.manaraa.com

44

Figure 4.4: Illustration of Lemma 12 that, the set of new maximal cliques in G′ containing e = (4, 5),

i.e. the single clique {2, 3, 4, 5}, is exactly the set of all maximal cliques in G′e.

is an additional duplicate elimination step in our algorithm, whose goal is to only to suppress

enumerating the same clique multiple times.

For edge e ∈ H, let C ′(e) denote the set of maximal cliques in G′ that contain edge e. We first

present the following observation that Λnew, the set of all new maximal cliques, is precisely the set

of all maximal cliques in G′ that contain at least one edge from H.

Lemma 11.

Λnew(G,G′) = ∪e∈HC ′(e)

Proof. We first note that each clique in Λnew must contain at least one edge from H. We use proof

by contradiction. Consider a clique c ∈ Λnew. If c does not contain an edge from H, then c is

also a clique in G, and hence cannot belong to Λnew. Hence, c ∈ C ′(e) for some edge e ∈ H, and

c ∈ ∪e∈HC ′(e). This shows that Λnew ⊆ ∪e∈HC ′(e). Next consider a clique c ∈ ∪e∈HC ′(e). It must

be the case that c ∈ C ′(h) for some h in H. Thus c is a maximal clique in G′. Since c contains

edge h ∈ H, c cannot be a clique in G. Thus c ∈ Λnew. This shows that ∪e∈HC ′(e) ⊆ Λnew.

We now consider efficient ways of enumerating cliques from ∪e∈HC ′(e). For an edge e ∈ H, the

enumeration of cliques in C ′(e) is reduced to the enumeration of all maximal cliques in a specific

subgraph of G′, as follows. Let u and v denote the endpoints of e, and let G′e denote the induced

subgraph of G′ on the vertex set {u, v} ∪ {ΓG′(u)∩ΓG′(v)} i.e. the set of vertices adjacent to both

u and v in G′, in addition to u and v. For example, see Figure 4.4 for construction of G′e.

www.manaraa.com

45

Lemma 12.

For each e ∈ H, C ′(e) = C(G′e)

Proof. First we show that C ′(e) ⊆ C(G′e). Consider a clique c in C ′(e), i.e. a maximal clique in

G′ = G+H containing edge e. Hence c must contain both u and v. Every vertex in c (other than

u and v) must be connected to both u and to v in G′, and hence must be in ΓG′(u)∩ΓG′(v). Hence

c must be a clique in G′e. Since c is a maximal clique in G′, and G′e is a subgraph of G′, c must

also be a maximal clique in G′e. Hence we have that c ∈ C(G′e), leading to C ′(e) ⊆ C(G′e).

Next, we show that C(G′e) ⊆ C ′(e). Consider any maximal clique d in G′e. We note the following

in G′e: (1) every vertex in G′e (other than u and v) is connected to u as well as v (2) u and v are

connected to each other. Due to these conditions, d must contain both u and v, and hence also

edge e = (u, v). Clearly, d is a clique in G′ that contains edge e. We now show that d is a maximal

clique in G′. Suppose not, and we could add vertex v′ to d and it remained a clique in G′. Then,

v′ must be in ΓG′(u)∩ΓG′(v), and hence v′ must be in G′e, so that d is not a maximal clique in G′e,

which is a contradiction. Hence, it must be that d is a maximal clique in G′ that contains edge e,

and d ∈ C ′(e).

Following Lemma 12, in Figure 4.4, {2, 3, 4, 5} is a new maximal clique in G′ that contains

e = (4, 5) ∈ H,H = {(3, 5), (4, 5)}. Note that {2, 3, 4, 5} is also a maximal clique in G′e.

Our change-sensitive algorithm, IMCENewClq (Algorithm 2) is based on the above observation,

and uses an output-sensitive algorithm MCE, due to [32], to enumerate all maximal cliques in G′e.

We now present the time space complexity analysis of IMCENewClq. Our analysis shows that

IMCENewClq is a change-sensitive algorithm for enumerating new maximal cliques, since its time

complexity is polynomial in the maximum degree ∆ and linear in the number of new maximal

cliques |Λnew| and in the number of new edges ρ.

Theorem 4. IMCENewClq enumerates the set of all new cliques arising from the addition of H in

time O(∆3ρ|Λnew|) where ∆ is the maximum degree of a vertex in G′. The space complexity is

O(|E(G+H)|+ |V (G+H)|).

www.manaraa.com

46

Algorithm 2: IMCENewClq(G,H)

Input: G - Input graph, H - Set of ρ edges added to G

Output: All cliques in Λnew, each clique output once

1 Consider edges of H in an arbitrary order e1, e2, . . . , eρ
2 G′ ← G+H

3 for i = 1 . . . ρ do

4 e← ei = (u, v)

5 Ve ← {u, v} ∪ {ΓG′(u) ∩ ΓG′(v)}
6 G′e ← graph induced by Ve on G′

7 Generate cliques using MCE(G′e). For each clique c thus generated, output c only

if c does not contain an edge ej for j < i

Proof. We first prove the correctness of the algorithm. From Lemmas 11 and 12, we have that by

enumerating C(G′e) for every e ∈ H, we enumerate Λnew. Our algorithm does exactly that, and

enumerates C(G′e) using Algorithm MCE. Note that each clique c ∈ Λnew is output exactly once

though c maybe in C(G′e) for multiple edges e ∈ H. This is because c is output only for edge e that

occurs earliest in the pre-determined ordering of edges in H.

For the runtime, consider that the algorithm iterates over the edges in H. In an iteration

involving edge e, it constructs a graph G′e and runs MCE(G′e). Note that the number of vertices in

G′e is no more than ∆ + 1, and is typically much smaller, since it is the size of the intersection of

two vertex neighborhoods in G′. Since the arboricity of a graph is less than its maximum degree,

α′ ≤ ∆ where α′ is the arboricity of G′e. Further, the number of edges in G′e is O(∆2). The set

of maximal cliques generated in each iteration is a subset of Λnew, hence the number of maximal

cliques generated from each iteration is no more than |Λnew|. Applying Theorem 2, we have that

the runtime of each iteration is O(∆3|Λnew|).

Within each iteration, the time taken to generate the subgraph G′(e) is O(∆2), which is dom-

inated by the term O(∆3|Λnew|). For each new edge added, there must be a new maximal clique

that contains this edge. Hence, as long as ρ > 0 i.e. at least one new edge is added, Λnew is a

www.manaraa.com

47

non-empty set. The overall runtime of each iteration is bounded by O(∆3|Λnew|). Since there are

ρ iterations, the result on runtime follows.

For the space complexity, we note that the algorithm does not store the set of new cliques in

memory at any point. The space required to construct G′e is linear in the size of G′ = (G + H),

and so is the space requirement of Algorithm MCE(G′e), from Theorem 2. Hence the total space

requirement is linear in the number of edges in G+H.

4.4.2 Practical Algorithm for Enumerating New Maximal Cliques

Now we present an efficient algorithm FastIMCENewClq for enumerating new maximal cliques

when new edges are added. This is based on the theoretically efficient algorithm IMCENewClq, and

incorporates improvements that we discuss next.

The algorithm IMCENewClq uses as a subroutine Algorithm MCE (Chiba and Nishizeki [32]) to

enumerate maximal cliques within a subgraph of G. While MCE is theoretically output-sensitive, in

practice, it is not the most efficient algorithm for maximal clique enumeration. The most efficient

algorithms for maximal clique enumeration in a static graph are typically based on depth-first

search using a technique called “pivoting”, such as the algorithm TTT due to Tomita et al. [143]

as we have explained in Section 4.2. It is possible to directly improve the performance of the

IMCENewClq algorithm by using TTT in place of MCE. In the following, we show how to do even

better.

Reducing Redundant Clique Computation: Note that IMCENewClq (Algorithm 2) may

compute the same clique c multiple times. For example, if c ∈ C ′(e1) and c ∈ C ′(e2) for two distinct

edges e1 and e2, c will be enumerated (at least) twice, once when considering e1 in the for loop, and

once while considering edge e2. In Line 7, duplicates are suppressed prior to emitting the cliques,

by outputting c only for one of the edges among {e1, e2}. However, the algorithm still pays the

computational cost of computing a clique such as c multiple times.

We now present a method, Algorithm FastIMCENewClq to avoid such redundant clique compu-

tation. The idea is to consider the edges in H in a specific order e1, e2, When enumerating

www.manaraa.com

48

Algorithm 3: TTTExcludeEdges(G,K, cand, fini, E)

Input: G - The input graph, K - a non-maximal clique to extend

cand - Set of vertices that may extend K, fini - vertices that have been used to

extend K

E - set of edges to exclude

1 if (cand = ∅) & (fini = ∅) then

2 Output K and return

3 pivot← (u ∈ cand ∪ fini) such that u maximizes the size of cand ∩ ΓG(u)

4 ext← cand− ΓG(pivot)

5 for q ∈ ext do

6 Kq ← K ∪ {q}
7 if Kq ∩ E 6= ∅ then

8 cand← cand− {q} ; fini← fini ∪ {q}
9 continue

10 candq ← cand ∩ ΓG(q) ; finiq ← fini ∩ ΓG(q)

11 TTTExcludeEdges(G,Kq, candq, finiq, E)

12 cand← cand− {q} ; fini← fini ∪ {q}

all cliques in C(ei), the algorithm prunes out search paths that lead to cliques containing edge

ej , j < i. This way, each new clique is enumerated exactly once.

For this purpose, Algorithm FastIMCENewClq uses as a subroutine Algorithm TTTExcludeEdges

(Algorithm 3), an extension of the TTT algorithm, which enumerates all maximal cliques of an input

graph that avoid a given set of edges. While TTT simply takes a graph as input and enumerates

all maximal cliques within the graph, TTTExcludeEdges takes an additional input, a set of edges

E , and only enumerates those cliques within the graph that do not contain any edge from E . We

present a recursive version of TTTExcludeEdges, which takes as input five parameters – an input

graph G, three sets of vertices K, cand, and fini, and a set of edges E . The algorithm outputs

every maximal clique in G that (a) contain all vertices in K, (b) zero or more vertices in cand,

(c) none of the vertices in fini, and (d) none of the edges in E .

A description of TTTExcludeEdges is presented in Algorithm 3, and an example of its its output

in Figure 4.5. This algorithm follows the structure of the recursion in the TTT algorithm, and

www.manaraa.com

49

Figure 4.5: Enumeration of new maximal cliques from G to G′ due to addition of new edges (3, 6)

and (4, 6). Order the new edges as (3, 6) followed by (4, 6). There are two new maximal cliques

containing edge (4, 6), {4, 5, 6} and {2, 3, 4, 6}. With TTTExcludeEdges, only {4, 5, 6} is enumerated

when considering edge (4, 6), since {2, 3, 4, 6} has already been enumerated while considering edge

(3, 6).

incorporates additional pruning of search paths, by avoiding paths that contain an edge from E .

In particular, in Line 7 of TTTExcludeEdges, if the clique Kq (formed after adding vertex q to

K) contains an edge from E , then the rest of the search path, which will continue adding more

vertices, is not explored further. Instead the algorithm backtracks and tries to extend the clique

K by adding other vertices.

Our algorithm for enumerating new maximal cliques FastIMCENewClq (Algorithm 4) is an adap-

tation of IMCENewClq (Algorithm 2) where we use TTTExcludeEdges instead of the output-sensitive

MCE. In particular, while enumerating all new cliques containing edge ei, FastIMCENewClq enumer-

ates only those cliques that exclude edges {e1, e2 . . . , ei−1}. Note that in FastIMCENewClq, there is

no further duplicate suppression required, since the call to TTTExcludeEdges does not return any

cliques that contain an edge from E . This is more efficient than first enumerating duplicate cliques,

followed by suppressing duplicates before emitting them. This idea makes FastIMCENewClq more

efficient in practice than IMCENewClq.

The correctness of FastIMCENewClq follows in a similar fashion to that of Algorithm IMCENewClq

proved in Theorem 4, except that we also need a proof of the guarantee provided by Algo-

rithm TTTExcludeEdges, which we establish in the following lemma.

www.manaraa.com

50

Algorithm 4: FastIMCENewClq(G,H)

Input: G - input graph

H - Set of ρ edges being added to G

Output: Cliques in Λnew = C(G+H) \ C(G)

1 G′ ← G+H ; E ← φ

2 Consider edges of H in an arbitrary order e1, e2, . . . , eρ
3 for i← 1, 2, . . . , ρ do

4 e← ei = (u, v)

5 Ve ← {u, v} ∪ {ΓG′(u) ∩ ΓG′(v)}
6 G ← Graph induced by Ve on G′

7 K ← {u, v}
8 cand← Ve \ {u, v} ; fini← ∅
9 S ← TTTExcludeEdges(G,K, cand, fini, E)

10 Λnew ← Λnew ∪ S
11 E ← E ∪ ei

Lemma 13. TTTExcludeEdges(G,K, cand, fini, E) (Algorithm 3) returns all maximal cliques c in

G such that (1) c contains all vertices from K, (2) remaining vertices in c are chosen from cand,

(3) c contains no vertex from fini and (4) c does not contain any edges in E.

Proof. We note that TTTExcludeEdges matches the original TTT algorithm, except for lines 7 to 9.

Hence, if we do not consider lines 7 to 9 in TTTExcludeEdges, the algorithm becomes TTT, and by

the correctness of TTT (Theorem 1 [143]), all maximal cliques c in G are returned. Now consider lines

7 to 9 in TTTExcludeEdges. Clearly, (1), (2), (3) are preserved for each maximal clique c generated

by TTTExcludeEdges. Now to complete the correctness proof of TTTExcludeEdges, along with

proving (4), we also need to prove that each maximal clique c in G that does not contain any

edge in E is generated by TTTExcludeEdges. Assume there exists a maximal clique c in G, which

contains an edge in E , which is output by the TTTExcludeEdges algorithm, assume the offending

edge is e = (q, v). Suppose that vertex v was added to our expanding clique first. Then, as q is

processed, line 7 of the algorithm will return back true as e ∈ Kq and E , thus q will not be added

to the clique, and c will not be reported as maximal, a contradiction.

www.manaraa.com

51

Next, we show if a maximal clique does not contain an edge from E , the clique will be gener-

ated. Consider a maximal clique c in G that contains no edge from E but c is not generated by

TTTExcludeEdges. The only reason for c not being generated is the inclusion of lines 7 to 9 (of

TTTExcludeEdges) to TTT resulting in TTTExcludeEdges, because, otherwise, c would be generated

due to correctness of TTT. So in TTTExcludeEdges, during the expansion of K towards c, there

exists a vertex q ∈ c such that line 7 in TTTExcludeEdges is satisfied and c never gets a chance to

be generated as q is excluded from cand and included in fini (line 8). This implies that c contains

at least an edge in E , because otherwise, condition at line 7 would never be satisfied. This is a

contradiction, and completes the proof.

4.4.3 Enumeration of Subsumed Maximal Cliques

We now consider the enumeration of subsumed cliques, i.e. the set C(G)\C(G+H). A subsumed

clique c′ still exists in G′ = G+H, but is now a part of a larger clique in G′. Such a larger clique

must be a part of Λnew. Thus, an algorithm idea is to check each new clique c in Λnew to see

if c subsumed any maximal clique c′ in G. In order to see which maximal cliques c may have

subsumed, we note that any maximal clique subsumed by c must also be a maximal clique within

subgraph c − H. Thus, one approach is to enumerate all maximal cliques in c − H and for each

such generated clique c′, we check whether c′ is maximal in G by verifying maximality of c′ in G.

This algorithm can be implemented in space proportional to the size of G+H, since it can directly

use an algorithm for maximal clique enumeration such as MCE.

However, in practice, checking each potential clique for maximality is a costly operation since

it potentially needs to consider the neighborhood of every vertex of the clique. An alternative

approach to avoid this costly maximality check is to store the set of maximal cliques C(G) and

check if c′ is in C(G). The downside of this approach is that the space required to store the clique

set can be high.

Hence, we considered another approach to subsumed cliques, where we reduce the memory cost

by storing signatures of maximal cliques as opposed to the cliques themselves. The signature is

www.manaraa.com

52

computed by representing a clique in a canonical fashion (for instance, representing the clique as

a list of vertices sorted by their ids.) as a string followed by computing a hash of this string. By

storing only the signatures and not the cliques themselves, we are able to check if a clique is a

current maximal clique, and at the same time, pay far lesser cost in memory when compared with

storing the clique itself. The procedure is as described in Algorithm 5. With this approach of

storing signatures instead of storing the cliques themselves, there is a (small) chance of collision

of signatures, which means that the signatures of two different cliques C1 and C2 might be the

same. This might result in false positives meaning that some cliques might wrongly be concluded

as subsumed cliques. However, the probability of the event that the hash values of two different

cliques are same is extremely low with the use of a hashing algorithm such as 64-bit murmur hash 1.

In our experiments, we observed that the set of subsumed cliques reported with the use of signature

is always the same as the actual set of subsumed cliques. If it is extremely important to avoid false

positives, we can explicitly check a potential subsumed clique for maximality in the original graph.

In Algorithm 5, Lines 4 to 12 describes the procedure for computing S, the set of all maximal

cliques in c −H and Lines 13 to 15 decide which among the maximal cliques in S are subsumed.

For computing maximal cliques in c−H, we only consider the edges in H that are present in c as

we can see in Line 4. We prove that S is the set of all maximal cliques in c −H in the following

lemma using an induction on the number of edges in H those are present in c:

Lemma 14. In Algorithm 5, for each c ∈ Λnew, S contains all maximal cliques in c−H.

Proof. Note that we only consider the set of all edges H1 ⊆ H which are present in c (line 4). It

is clear that computing maximal cliques in c−H is equivalent to to computing maximal cliques in

c−H1.

We prove the lemma using induction on k, the number of edges in H1. Suppose k = 1 so that

H1 is a single edge, say e1 = {u, v}. Note that c−H1 has two maximal cliques, c \ {u} and c \ {v}.

It can be verified that in Algorithm 5 cliques c \ {u} and c \ {v} are inserted into S, thus proving

the base case.

1https://sites.google.com/site/murmurhash/

https://sites.google.com/site/murmurhash/

www.manaraa.com

53

Suppose that for any set H1 of size k, it is true that all maximal cliques in c −H1 have been

generated using induction hypothesis. Consider a set H ′1 = {e1, e2, ..., ek+1} with (k + 1) edges.

Now each maximal clique c′ in c −H1 either remains a maximal clique within c −H ′1 (if at least

one endpoint of ek+1 is not in c′), or leads to two maximal cliques in c−H ′1 (if both endpoints of

ek+1 are in c′). Thus lines 4 to 12 in Algorithm 5 generate all maximal cliques in c−H.

Algorithm 5: IMCESubClq(G,H,D,Λnew)

Input: G - Input Graph

H - Edge set being added to G

D - Set of maximal cliques in G

Λnew - set of new maximal cliques in G+H

Output: All cliques in Λdel = C(G) \ C(G+H)

1 Λdel ← ∅
2 for c ∈ Λnew do

3 S ← {c}
4 for e = (u, v) ∈ E(c) ∩H do

5 S′ ← φ

6 for c′ ∈ S do

7 if e ∈ E(c′) then

8 c1 = c′ \ {u} ; c2 = c′ \ {v}
9 S′ ← S′ ∪ c1 ; S′ ← S′ ∪ c2

10 else

11 S′ ← S′ ∪ c′

12 S ← S′

13 for c′ ∈ S do

14 if c′ ∈ D then

15 Λdel ← Λdel ∪ c′
16 D ← D \ c′

We show that the above is a change-sensitive algorithm for enumerating Λdel in the case when

the number of edges ρ in H is a constant. In the following lemma (Lemma 15), we present the

time and space complexity of IMCESubClq where we use an induction on ρ for proving the time

www.manaraa.com

54

complexity. Note that the time complexity is change-sensitive when ρ is a constant because, the

time complexity is linear on the size of Λnew.

Lemma 15. Algorithm IMCESubClq (Algorithm 5) enumerates all cliques in Λdel = C(G) \ C(G′)

using time O(2ρ|Λnew|). The space complexity of the algorithm is O(|E(G′)|+|V (G′)|+|C(G)|). The

algorithm can also be adapted to run in time O(2ρ|E(G)||Λnew|), and space O(|E(G′)|+ |V (G′)|.

Proof. We first show that every clique c′ enumerated by the algorithm is indeed a clique in Λdel.

To see this, note that c′ must be a maximal clique in G, due to explicitly checking the condition.

Further, c′ is not a maximal clique in G′, since it is a proper subgraph of c, a maximal clique in G′.

Next, we show that all cliques in Λdel are enumerated. Consider any subsumed clique c′1 ∈ Λdel. It

must be contained within c1 −H, where c1 ∈ Λnew. Moreover, c′1 will be a maximal clique within

c1 −H, and will be enumerated by the algorithm according to Lemma 14.

For the time complexity we show that for any c ∈ Λnew, the maximum number of maximal

cliques in c−H = c−H is 2ρ. Proof is by induction on ρ. Suppose ρ = 1 so that H is a single edge,

say e1 = {u, v}. Then clearly c−H has two maximal cliques, c \ {u} and c \ {v}, proving the base

case. Suppose that for any set H of size k, it was true that c−H has no more than 2k maximal

cliques. Consider a set H ′′ = {e1, e2, . . . , ek+1} with (k + 1) edges. Let H ′ = {e1, e2, . . . , ek}.

Subgraph c − H ′′ is obtained from c − H ′ by deleting a single edge ek+1. By induction, we have

that c−H ′ has no more than 2k maximal cliques. Each maximal clique c′ in c−H ′ either remains

a maximal clique within c − H ′′ (if at least one endpoint of ek+1 is not in c′) , or leads to two

maximal cliques in c − H ′′ (if both endpoints of ek+1 are in c′). Hence, the number of maximal

cliques in c−H ′′ is no more than 2k+1, completing the inductive step.

Thus, for each cliques c ∈ Λnew, we need to check maximality for no more than 2ρ cliques in G.

Note that a clique c′ is maximal in G if it is contained in C(G), the set of maximal cliques in G.

This can be done in constant time by storing the signatures of maximal cliques and checking if the

signature of c′ is in the set of signatures of maximal cliques of G.

For the space bound, we first note that all operations in Algorithm 5 except maximality check

can be done in space linear in the size of G′. For maximality check we need space O(|C(G)|) as we

www.manaraa.com

55

need to store the (signatures of) maximal cliques of G. The only remaining space cost is the size of

Λnew, which can be large. Note that the algorithm only iterates through Λnew in a single pass. If

elements of Λnew were provided as a stream from the output of an algorithm such as IMCENewClq,

then they do not need to be stored within a container, so that the memory cost of receiving Λnew

is reduced to the cost of storing a single maximal clique within Λnew at a time.

An alternative algorithm does not store C(G) (or hashes of elements in C(G)). Instead, each

time a potential subsumed clique c′ is generated that is contained in a new clique c ∈ Λnew,

we simply check c′ for maximality in G. This can be done in time O(|E(G)|), by checking the

intersections of the different vertex neighborhoods – typical runtime for maximality checking can

be much smaller.

4.4.4 Decremental Case

Next, we consider the case when a set of edges H is deleted from G. A set of edges H is deleted

from graph G, and we are interested in efficiently enumerating Λ(G,G−H). The decremental case

can be reduced to the incremental case through the following observation.

Observation 2. Λdel(G,G−H) = Λnew(G−H,G) and Λnew(G,G−H) = Λdel(G−H,G)

Proof. Consider the first equation: Λdel(G,G − H) = Λnew(G − H,G). Let c ∈ Λdel(G,G − H).

This means that c ∈ C(G) and c 6∈ C(G −H). Equivalently, c is not a maximal clique in G −H,

but upon adding H to G − H, c becomes a maximal clique in G. Hence, it is equivalent to say

that c ∈ Λnew(G−H,G). Hence, we have Λdel(G,G−H) = Λnew(G−H,G). The other equation,

Λnew(G,G−H) = Λdel(G−H,G), can be proved similarly.

The decremental algorithm for maximal cliques is outlined in Algorithm 6 (IMCED).

4.4.5 Fully Dynamic Case

Consider the fully dynamic case, where there is a set of insertions (edge set H) as well as

deletions (edge set H ′) from a graph. This can be processed as follows. First, we ensure there is

www.manaraa.com

56

Algorithm 6: IMCED(G,H)

Input: G - Input Graph, H - Set of ρ edges being deleted

Output: All cliques in Λnew(G,G−H) ∪ Λdel(G,G−H)

1 Λnew ← ∅, Λdel ← ∅, G′′ ← G−H
2 Λdel ← IMCENewClq(G′′, H)

3 Λnew ← IMCESubClq(G′′, H, C(G′′),Λdel)

Figure 4.6: Change in the maximal cliques due to both addition and deletion of edges. The initial

graph G, graph G1 after deleting edge (b, c) from G, resulting in new maximal cliques {a, c, d}
and {a, b, d} and one deleted maximal clique {a, b, c, d}, graph G2 after adding edges (a, e), (e, d),

(a, f), and (d, f) from G1 resulting in new maximal cliques {a, e, d, c} and {a, b, d, f} and subsumed

cliques {a, c, d}, {a, b, d}, {c, e}, and {b, f}. Note that, the intermediate new cliques (at state G1)

{a, c, d} and {a, b, d} are only “transient” maximal cliques, and are not in the final graph G2.

no overlap between H and H ′, i.e. H ∩ H ′ = ∅. If this is not the case, we can simply remove

overlapping elements since they have no effect on the final graph. Next, we enumerate the change

following all the edge deletions, followed by enumerating the change upon edge insertions. Note

however, that this may not lead to a change-sensitive algorithm. Intermediate cliques that are

output may not be in the final set of new or subsumed cliques. See Figure 4.6 for an example.

4.5 Discussion

Our incremental algorithm IMCE can adapted to related problems such as maintaining top-k

maximal cliques. Also, the techniques developed in the work can be used for the maintenance of

maximal cliques with additional search context such as graph with labels at nodes or vertices.

www.manaraa.com

57

Maintenance of top-k maximal cliques: Observe that the vertices corresponds to the top-k

maximal cliques are of a high degree. More precisely, if the smallest size of the clique among the

current top-k maximal cliques is s, then we only need to consider the vertices of the original graph

whose degree is at least (s− 1). Thus, given top-k maximal cliques of G, we can update the top-k

maximal cliques of the graph G′ = G + H using our incremental algorithm as follows: (1) For

computing new maximal cliques, we only enumerate those with size at least s. We can do this by

recursively deleting vertices of degree smaller than s − 1 from the subgraph used (G at Line 6 of

Algorithm 4), adding these vertices to the fini set (Line 8 of Algorithm 4) and then enumerating

maximal cliques of the updated graph containing the rest of the vertices (by adding them to the

cand set at Line 8 of Algorithm 4). This ensures that each maximal clique such enumerated, is of

size at least s. (2) It is possible that some of the maximal cliques in top-k may be subsumed by

larger new maximal cliques when new edges are added. The algorithm for subsumed cliques can

deal with this situation in the following manner: instead of checking for the containment in the

set of maximal cliques of the original graph, check for the containment in the set of top-k maximal

cliques (Line 14 of Algorithm 5 where the set C contains only top-k maximal cliques of G instead

of all maximal cliques of G). Eventually, as a result of subsumption, it might happen that, the

number of maximal cliques is less than k in the final set. For handling this situation, it is required

to generate the set of all new maximal cliques and sort them in decreasing order of sizes.

Maintenance of maximal cliques with search context: Search contexts are relevant in “key-

word” based or “topic” based searches, or in the combinations of the two, such as finding commu-

nities with people interested in a specific topic [54, 66]. The network in this context contains labels

attached to nodes/edges. We can use IMCE for maintaining maximal cliques such that each of the

nodes in the maximal cliques contains one or a group of specified keywords/labels. There might be

two cases.

First, consider the case when vertices contain labels. Here, we should consider only those ver-

tices to add to cand set (Line 8 of Algorithm 4) from the graph G′e that contains the specified labels

www.manaraa.com

58

and put rest of the vertices in fini set. This way, we can use IMCE for maintaining only those

maximal cliques that contain specified labels to the vertices. Next we consider the case when edges

contain labels. For generating maximal cliques with each of the edges containing specified labels,

we consider Algorithm 3, and add an additional check for constraints on edge labels whenever we

add a vertex q to K (in Line 6 of the algorithm).

Boundedness of incremental computation: In the context of a recent theoretical framework

for incremental graph algorithms [53], the time complexity of IMCE is bounded when the size of

the batch ρ is fixed. Our analysis shows that when the original graph is large and the changes

in the graph is small, the time complexity of computing the change is proportional to the size of

the change in the set of maximal cliques, which follows the definition of bounded computation as

defined in [53]. Also, IMCE admits localizable computations [53] as we focus on the subgraphs local

to the changes in the graph structure for enumerating the changes.

4.6 Experimental Evaluation

In this section, we present results from empirical evaluation of the performance of algorithms

proposed in this paper. We address the following questions: (1) What is the computation time and

memory usage of our algorithms? (2) How does the computation time compare with the magnitude

of the change when new edges are added (incremental algorithm), when existing edges are deleted

(decremental algorithm), and in the fully dynamic case, when edges are both added and deleted?

(3) What is the impact on the computation time of our incremental algorithm when the stream of

new edges are located around high/low degree vertices of the original graph? (5) In the incremental

case, can we achieve a space-time trade-off in subsumed clique computation, depending on whether

or not we store the (signatures) of the set of maximal cliques? (6) How does our algorithms compare

with prior works?

www.manaraa.com

59

4.6.1 Datasets

We consider graphs from the Stanford large graph database [86], KONECT- The Koblenz

Network Collection 2, and Network Repository 3: dblp-coauthor is a co-authorship network where

each vertex represents an author and there is an edge between two authors if they have a common

publication. flickr-growth is a social network of Flickr users where each vertex represents a user

and there exists a directed edge if two users are friends. ca-cit-HepTh is a citation network in high

energy physics theory in a period from January 1993 to April 2003 where each vertex represents

a paper and there is an edge from “a” to “b” if paper “a” cited paper “b”. wikipedia-growth is

a hyperlink network of the English Wikipedia where each vertex represents a wikipedia page and

there is an edge from a page wiki1 to a page wiki2 if there is a hyperlink of wiki2 from wiki1.

facebook-friendship is a friendship network where vertex represents user and there is an edge

between two users if they are friends. In each graph, edges have time-stamps of creation. We

convert all these graphs into simple undirected graphs. If there are multiple time-stamp edges

between two vertices, we take the edge with the earliest time-stamp. soc-livejournal is a social

network of LiveJournal where vertex represents user and there is an edge between two users when

they are friends. As the original graph does not contain timestamps at its edges, we synthetically

generate timestamps of edges by assigning an integer uniformly chosen at random between 0 and

the number of edges in the network to each edge. A summary of the graphs used in this experiment

is given in Table 4.1. In our experiments, for incremental computation we start with the empty

graph and at each iteration, we add a batch of new edges (in the increasing order of timestamps),

and enumerate the change in maximal cliques after the addition. For decremental computation, we

start with the original graph and it each iteration, delete a batch of existing edges (in the decreasing

order of timestamps), and enumerate the change in maximal cliques after the deletion.

Next we generate three synthetic RMAT [25] graphs. An RMAT-n-m graph has n vertices and

m edges. We use RMAT-50K-5M and RMAT-100K-10M for addressing graphs with specific edge stream

patterns (edge stream around high/low degree vertices) and a high density graph RMAT-100-4000

2http://konect.uni-koblenz.de/
3http://networkrepository.com/

http://konect.uni-koblenz.de/
http://networkrepository.com/

www.manaraa.com

60

for addressing the behavior of the maintenance algorithms with the change in the density of the

graph.

For generating the edge stream for the fully dynamic case, we used the first two RMAT graphs.

We first randomly assign a label of either 0 (for edge deletion) or 1 (for edge addition) to each

edge. We then assign a randomly chosen timestamp to each edge of the graph. For creating

the initial graphs RMAT-50K-5M-INIT and RMAT-100K-10M-INIT, we remove all the edges from the

original graph those are marked 1. We then arrange all edges in increasing order of timestamps

for creating the edge stream for RMAT-50K-5M-INIT. For RMAT-100K-10M-INIT, we order all the

edges by grouping them based on the source vertex. Note that a batch of edges contains a mix of

new edges to add and existing edges to delete. For experimenting with the stream of edges around

high degree vertices, we choose the 1000 highest degree vertices of the initial graph and consider

all the edges with a label of 1 that are attached to at least one high degree vertex. Similarly for

experimenting with the stream of edges around low degree vertices, we choose the 10,000 lowest

degree vertices of the initial graph and consider all the edges with label 1 that are attached to at

least a low degree vertex. For creating the edge stream of RMAT-100-4000, we follow an approach

similar to soc-livejournal.

We also considers a variant of the Erdős-Rényi random graph model G(n,N) graph for our ex-

periments where n is the number of vertices and N is the number of edges. In these, we first generate

graphs according to the standard Erdős-Rényi random graph model [51], and we “plant” cliques

of a certain size. We call these graphs ER-1M-20M with 1M vertices, 20M edges and ER-2M-15M

with 2M vertices and 15M edges. We plant 10 random cliques each of size 20 on ER-1M-20M and 10

random cliques each of size 30 on ER-2M-15M, with the goal of finding the planted cliques through

incremental computation.

www.manaraa.com

61

Table 4.1: Input graphs and their aggregate statistics.

Dataset Nodes Edges Density # Maximal Cliques Maximum Degree Degeneracy

dblp-coauthor 1,282,468 5,179,996 6.3× 10−6 1,219,320 1522 118

flickr-growth 2,302,925 22,838,276 8.6× 10−6 > 400B 27,937 600

wikipedia-growth 1,870,709 36,532,531 2.08× 10−5 131,652,971 226,073 206

soc-livejournal 4,033,137 27,933,062 3.4× 10−6 38,413,665 2651 213

ca-cit-HepTh 22,908 2,444,798 0.0093 > 400B 8718 561

facebook-friendship 63,731 817,035 4× 10−4 1,539,038 1098 52

RMAT-100-4000 100 4000 0.8 10,180 99 65

RMAT-50K-5M 50K 5M 0.004 232,400,002,455 10,496 328

RMAT-100K-10M 100K 10M 0.002 144,600,002,154 15,408 371

ER-1M-20M 1M 20M 4× 10−5 19,978,809 81 29

ER-2M-15M 2M 15M 7.5× 10−6 14,998,954 59 29

4.6.2 Experimental Setup and Implementation Details

We implemented all the algorithms in Java on a 64-bit Intel(R) Xeon(R) CPU with 16G DDR3

RAM with 13G JVM heap memory.

Algorithm Implementations: We first evaluate our incremental algorithm IMCE for maintenance

of maximal cliques when new edges are added. IMCE consists of FastIMCENewClq for enumerating

new maximal cliques and IMCESubClq for enumerating subsumed maximal cliques. We also im-

plemented the theoretically efficient algorithm IMCENewClq for enumerating new maximal cliques.

Since FastIMCENewClq performed better in all cases, we present results for FastIMCENewClq. We

also implemented a variant of IMCENewClq by replacing MCE with TTT and name this variant as

IMCENewClqTTT.

We evaluate a variant of IMCE where we use a different strategy for computing subsumed cliques

in IMCESubClq. Note that deciding subsumed cliques by checking if it is in the set of all maximal

cliques of the graph before update requires us to store the set of maximal cliques (or their signatures)

of the original graph as in IMCESubClq. In this variant, we modify Line 14 of IMCESubClq where

instead of checking for containment, we directly check for maximality of each c′ (Line 13 of algorithm

IMCESubClq). We name this variant of IMCE as IMCE− NoCliqueStore. IMCE− NoCliqueStore

www.manaraa.com

62

uses less memory than IMCE, but has to pay an additional overhead to check for maximality for

each candidate subsumed clique.

Next we evaluate Algorithm 6 (IMCED) which handles the decremental case. When the graph

changes to G−H starting from G due to the deletion of a batch H, we compute the new maximal

cliques and deleted maximal cliques following Observation 2. We also experimentally evaluate the

fully dynamic case with a mixture of addition and deletion of edges. For dealing with the fully

dynamic case, we first remove all edges that are both added and deleted (as these edges do not

contribute to the change in the set of maximal cliques). We then run IMCED for computing the

changes due to the deletion of edges, followed by IMCE− NoCliqueStore for computing the changes

due to the addition of edges. Finally, we generate the overall changes in the set of maximal cliques

due to the deletion and addition of edges.

We consider the following prior algorithms for comparison with IMCE: (1) STIX (Stix [135])

computes on a dynamic graph by incrementally adding one edge at a time; (2) OV (Ottosen and

Vomlel [112]) computes on a dynamic graph by incrementally adding a set of edges; (3) MCMEI (Sun

et al. [136]) computes on a dynamic graph by incrementally adding one edge at a time. We also

consider the following prior algorithms for comparison with our decremental algorithm IMCED: (1)

STIXD (Stix [135]) computes on a dynamic graph by deleting one edge at a time; (2) MCMED (Sun et

al. [136]) computes on a dynamic graph by deleting one edge at a time. For the algorithms (STIX,

MCMEI, STIXD, MCMED) that support only single edge addition/deletion, we simulate the addition

(deletion) of a batch of edges by inserting (deleting) the edges one at a time. We also compare

IMCE and IMCED with baseline algorithms Naive and NaiveD respectively where Naive handles the

incremental case by running a static algorithm TTT each time a set of new edges is added to the

graph and explicitly computing the symmetric difference; NaiveD similarly handles the decremental

case by running TTT each time a set of existing edges is deleted from the graph.

Metrics: We evaluate the performance of algorithms through the following metrics: (1) total

computation time for determining new maximal cliques and subsumed maximal cliques when a

www.manaraa.com

63

batch of new edges is added to the graph; (2) change-sensitiveness, i.e, total computation time

as a function of the size of the total change. For defining the size of change in the theoretical

analysis (Section 4.4), we used the total number of cliques that were added and deleted. We call

this metric as “change-in-number”. Note that there are other natural ways to quantify the size of

change. If one were to actually enumerate the change, each clique that is added (or deleted) could

be written as a set of its constituent vertices. Hence it is natural to consider another metric for the

size of change, equal to the sum of the sizes of all cliques that are a part of the change. We call

this metric as “change-in-nodes”. We further consider another metric “change-in-edges”, defined

as the sum of the numbers of edges in all the cliques that are a part of the change. For example,

suppose there are two new maximal cliques of sizes 3 and 4, and one subsumed clique of size 2. The

change-in-number is 3, since there are a total of three cliques to enumerate. The change-in-nodes

is 3 + 4 + 2 = 9. The change-in-edges is
(
3
2

)
+
(
4
2

)
+
(
2
2

)
= 10, since a clique on k vertices has

(
k
2

)
edges. We consider all three metrics, change-in-number, change-in-nodes, and change-in-edges, to

measure the size of change. (3) memory cost, which includes the space required to store the graph

as well as additional data structures used by the algorithm; and (4) cumulative computation time

(through a series of incremental updates) as a function of the size of the batch.

4.6.3 Discussion of Experimental Results

Incremental computation time: Figure 4.7 shows the computation time of IMCE for com-

puting the change in the set of maximal cliques when batches of edges are added. The batch size

is set to ρ = 1000. The size of the change is shown on the left y-axis, and the time for com-

puting the change is shown on the right y-axis. We see that the time for computing the change

in the set of maximal cliques becomes greater as iterations progress for graphs flickr-growth,

soc-livejournal, and facebook-friendship, and remains roughly the same for other graphs.

Figure 4.8 shows the breakdown of computation time of IMCE into computation time for new maxi-

mal cliques (FastIMCENewClq) and computation time for subsumed maximal cliques (IMCESubClq).

www.manaraa.com

64

103

104

105

106

107

108

1000 2000 3000 4000 5000
10−3

10−2

10−1

100

101

si
ze

-o
f-
ch

an
ge

co
m

p.
ti

m
e(

se
c.

)

Iteration number

103

104

105

106

107

108

900 1800 2700 3600
10−3

10−2

10−1

100

101

si
ze

-o
f-
ch

an
ge

co
m

p.
ti

m
e(

se
c.

)

Iteration number

103

104

105

106

7000 14000 21000 28000
10−2

10−1

100

si
ze

-o
f-
ch

an
ge

co
m

p.
ti

m
e(

se
c.

)

Iteration number

(a) dblp-coauthor (b) flickr-growth (c) wikipedia-growth

102

103

104

105

106

107

4000 8000 12000 16000
10−3

10−2

10−1

100

101

si
ze

-o
f-
ch

an
ge

co
m

p.
ti

m
e(

se
c.

)

Iteration number

102

103

104

105

106

107

0 2 4 6 8 10 12 14 16 18 20
10−2

10−1

100

101

102

103

104

si
ze

-o
f-
ch

an
ge

co
m

p.
ti

m
e(

se
c.

)

Iteration number

103

104

105

106

107

200 400 600 800
10−3

10−2

10−1

100

si
ze

-o
f-
ch

an
ge

co
m

p.
ti

m
e(

se
c.

)

Iteration number

(d) soc-livejournal (e) ca-cit-HepTh (f) facebook-friendship

change-in-number
change-in-edges

change-in-nodes
time

Figure 4.7: Computation time for enumerating the change in set of maximal cliques for IMCE, and

size-of-change per batch (batch size ρ = 1000). The left y axis shows the size of change and the

right y axis shows the computation time in seconds.

www.manaraa.com

65

0.01

0.1

1

1-2
K

2K
-3K

3K
-4K

4K
-5KA

vg
.

co
m

p.
ti

m
e

in
ra

ng
e

Iteration range

0.001

0.01

0.1

1

10

1-.8
K
.8K

-1.6
K

1.6
K-2.4

K

2.4
K-3.6

K

A
vg

.
co

m
p.

ti
m

e
in

ra
ng

e

Iteration range

0.001

0.01

0.1

1

1-7
K

7K
-14

K
14K

-21
K

21K
-29

K

A
vg

.
co

m
p.

ti
m

e
in

ra
ng

e

Iteration range

(a) dblp-coauthor (b) flickr-growth (c) wikipedia-growth

0.001

0.01

0.1

1

1-4
K

4K
-8K

8K
-12

K
12K

-17
K

A
vg

.
co

m
p.

ti
m

e
in

ra
ng

e

Iteration range

0.1

1

10

100

1-5 5-1
0

10-
15

15-
19A
vg

.
co

m
p.

ti
m

e
in

ra
ng

e

Iteration range

0.001

0.01

0.1

1

1-2
00

200
-40

0
400

-60
0

600
-80

0

A
vg

.
co

m
p.

ti
m

e
in

ra
ng

e

Iteration range

(d) soc-livejournal (e) ca-cit-HepTh (f) facebook-friendship

FastIMCENewClq IMCESubClq

Figure 4.8: Computation time (in sec.) broken down into time for new and subsumed cliques with

batch size ρ = 1000. Average time in the y-axis is the average taken over the total computation

times (new + subsumed) of the iterations in each of the ranges on the x-axis.

www.manaraa.com

66

0.001

0.01

0.1

1

10

100

500 1000 1500 1900

co
m

pu
ta

ti
on

ti
m

e
(s

ec
.)

Iteration number

0.001

0.01

0.1

1

10

100

500 1000 1500 2000

co
m

pu
ta

ti
on

ti
m

e
(s

ec
.)

Iteration number

0.001

0.01

0.1

1

10

1000 2000 3000 4000

co
m

pu
ta

ti
on

ti
m

e
(s

ec
.)

Iteration number

(a) dblp-coauthor (b) flickr-growth (c) wikipedia-growth

0.001

0.01

0.1

1

10

100

4000 8000 12000 16000

co
m

pu
ta

ti
on

ti
m

e
(s

ec
.)

Iteration number

0.001

0.01

0.1

1

10

100

1000

0 5 10 15 20 25 30 35

co
m

pu
ta

ti
on

ti
m

e
(s

ec
.)

Iteration number

0.001

0.01

0.1

1

10

200 400 600 800

co
m

pu
ta

ti
on

ti
m

e
(s

ec
.)

Iteration number

(d) soc-livejournal (e) ca-cit-HepTh (f) facebook-friendship

IMCE IMCE-NoCliqueStore

Figure 4.9: Difference in computation time due to different strategies for subsumed cliques computa-

tion: once by storing the maximal cliques and another by directly checking for maximality (without

storing the maximal cliques). We use batch size 1000 for all graphs except for ca-cit-HepTh where

we use batch size of 100.

www.manaraa.com

67

Strategies for subsumed cliques: Next we compare the computation time of IMCE with

IMCE− NoCliqueStore as shown in Figure 4.9. Clearly, IMCE is faster than IMCE− NoCliqueStore,

because, cost of checking for maximality in computing subsumed cliques as in IMCE− NoCliqueStore

is higher than checking for containment in the set of maximal cliques in computing subsumed cliques

as in IMCE. We do not observe much difference in computation time for the graphs dblp-coauthor

and ca-cit-HepTh because dblp-coauthor is small and sparse; ca-cit-HepTh is small and sparse

at the initial states of the computation compared to the other graphs. Therefore the sizes of neigh-

borhood of the vertices are small that causes the maximality checking easier.

104

105

106

107

800 1600 2400 3200
10−2

10−1

100

101

si
ze

-o
f-
ch

an
ge

co
m

p.
ti

m
e(

se
c.

)

Iteration number

104

105

106

107

108

109

400 800 1200 1600
10−1

100

101

102
si

ze
-o

f-
ch

an
ge

co
m

p.
ti

m
e(

se
c.

)

Iteration number

(a) RMAT-50K-5M (b) RMAT-100K-10M

change-in-number
change-in-edges

change-in-nodes
time

Figure 4.10: Performance of IMCE with edge stream centering around 1K highest degree vertices

considering batch size 100.

Impact of edge insertion pattern on computation time : We study the computation time

of IMCE when the new edges centers around high degree and low degree vertices. We have used

synthetic graphs RMAT-50K-5M-INIT and RMAT-100K-10M for this evaluation. We consider new

edges around 1K highest degree nodes for creating the edge stream around high degree nodes and

consider new edges around 10K least degree nodes for creating the edge stream around low degree

nodes. We observe that the changes in the set of maximal cliques are large (Figure 4.10) when the

new edges centers around high degree vertices of the initial graph. On the other hand, the changes

www.manaraa.com

68

in the set of maximal cliques is small when the new edges centers around low degree vertices of the

initial graph and the computation time is small. For instance, addition of 655 batches (with batch

size 100) of edges around low degree vertices, starting with RMAT-50K-5M-INIT takes around 0.6

second with cumulative size of change (in the number of maximal cliques) 93K whereas addition

of 655 batches of new edges (with the same batch size) centering around high degree vertices takes

around 137 sec. with cumulative size of change (in the number of maximal cliques) 1.8×107 starting

with the same initial graph.

Table 4.2: Cumulative computation time (in sec.) for new maximal cliques with batch size ρ = 100.

The number of batches for which the cumulative time is computed is in the parenthesis.

Dataset IMCENewClq IMCENewClqTTT FastIMCENewClq

dblp-coauthor (9603) 7774 62 24

flickr-growth (25,000) 7161 343 125

wikipedia-growth (26,795) 446 310 30

soc-livejournal (151,997) 7200 474 302

ca-cit-HepTh (233) 7464 71 15

facebook-friendship (8171) 2100 89 55

Benefits of using TTTExcludeEdges for new maximal cliques: We compare the compu-

tation times of IMCENewClq (which uses MCE to enumerate cliques), IMCENewClqTTT (which uses

TTT) and FastIMCENewClq (which uses TTTExcludeEdges) and the results are shown in Table 4.2.

We observe that FastIMCENewClq is significantly faster than IMCENewClqTTT – the difference can

be attributed to the additional pruning in TTTExcludeEdges when compared with TTT. Further,

IMCENewClqTTT is much faster than IMCENewClq – the difference can be attributed to the use of

TTT which is faster than MCE.

On finding planted cliques in synthetic graphs: We observe that IMCE can find all

“planted” cliques in the synthetic G(n,N) graphs in approximately 20 min. where as the other

algorithms (STIX, OV, MCMEI) could not find a single planted clique in an hour. Results are shown

www.manaraa.com

69

Table 4.3: Total time taken to find all the planted cliques incrementally (ρ = 100). Other algorithms

(STIX, OV, MCMEI) cannot find a single planted clique within an hour.

Dataset IMCE IMCENewClq

ER-1M-20M 19 min. 24 min.

ER-2M-15M 15 min. 15 min.

in Table 4.3.

102

103

104

105

106

12000 24000 36000 48000
10−3

10−2

10−1

si
ze

-o
f-
ch

an
ge

co
m

p.
ti

m
e(

se
c.

)

Iteration number

101
102
103
104
105
106
107
108
109

1010

0 5 10 15 20 25 30 35
10−3
10−2
10−1
100

101
102
103
104
105

si
ze

-o
f-
ch

an
ge

co
m

p.
ti

m
e(

se
c.

)
Iteration number

102

103

104

105

106

400 800 1200
10−1

100

101

102

si
ze

-o
f-
ch

an
ge

co
m

p.
ti

m
e(

se
c.

)

Iteration number

(a) dblp-coauthor (b) flickr-growth (c) wikipedia-growth

103

104

105

106

107

108

109

1010

0 10 20 30 40 50 60
10−2

10−1

100

101

102

103

si
ze

-o
f-
ch

an
ge

co
m

p.
ti

m
e(

se
c.

)

Iteration number

103

104

105

106

107

108

109

60 120 180 240
10−1

100

101

102

103

104

si
ze

-o
f-
ch

an
ge

co
m

p.
ti

m
e(

se
c.

)

Iteration number

102

103

104

105

106

2000 4000 6000 8000
10−3

10−2

10−1

100
si

ze
-o

f-
ch

an
ge

co
m

p.
ti

m
e(

se
c.

)

Iteration number

(d) soc-livejournal (e) ca-cit-HepTh (f) facebook-friendship

change-in-number
change-in-edges

change-in-nodes
time

Figure 4.11: Computation time for enumerating the change in set of maximal cliques for decremental

case when the edges are deleted from the graph instead of insertion, and size-of-change per batch

(batch size ρ = 100 except for flickr-growth where the batch size is 10). The left y axis shows

the size of change and the right y axis shows the computation time in seconds.

Decremental computation time: Figure 4.11 shows the computation time of IMCED for com-

puting the changes in the set of maximal cliques when batches of edges are deleted. For this

experiment, we choose a batch size of 100 edges. For the graph flickr-growth, we had to prune

the graph down by 15 million edges, to get a reasonable turnaround time for the computation. We

www.manaraa.com

70

used a batch size of 10 for this graph. Similarly, in the case of ca-cit-HepTh, we had to prune the

graph down by 1.9 million edges and used the rest of the graph as the initial graph and used the

batch size of 100 for performing the decremental computation starting from that point.

103

104

105

106

400 800 1200 1600
10−1

100

101

102

si
ze

-o
f-
ch

an
ge

co
m

p.
ti

m
e(

se
c.

)

Iteration number

104

105

106

107

20 40 60 80
100

101

102

103

si
ze

-o
f-
ch

an
ge

co
m

p.
ti

m
e(

se
c.

)

Iteration number

(a) RMAT-50K-5M (b) RMAT-100K-10M

change-in-number
change-in-edges

change-in-nodes
time

Figure 4.12: Fully dynamic case where both addition and deletion of edges are performed in a

streaming manner. Each batch (of size 100) in the stream consists of mixed edges.

Fully dynamic computation time: Figure 4.12 shows the behavior of the algorithm in a fully

dynamic setting, where a batch contains both the edges for addition and edges for deletion. For

this experiment, we considered synthetic RMAT graphs RMAT-50K-5M and RMAT-100K-10M.

Impact of graph density on incremental case: Figure 4.13 shows the computation time of

IMCE− NoCliqueStore upon adding a batch of 100 edges of the initial graphs with different den-

sities. For generating the initial graphs, at every iteration i, we add 100000 × i edges in stream

to the empty graph and we insert the batch of next 100 edges to evaluate the performance of

IMCE− NoCliqueStore. For this experiment, we do not use IMCE because for most of the graphs

(flickr-growth, wikipedia-growth, soc-livejournal, ca-cit-HepTh) the number of maxi-

mal cliques at different densities are so large that those cannot fit in the main memory and IMCE

requires the set of maximal cliques of the initial graph for computing the subsumed cliques. We ob-

serve that the cost of computing the changes increases as the graph becomes denser. The changes

www.manaraa.com

71

102

103

104

105

106

107

108

0 10 20 30 40 50 60
10−3

10−2

10−1

100

101

102

si
ze

-o
f-
ch

an
ge

co
m

p.
ti

m
e(

se
c.

)

Iteration

102

103

104

105

106

107

108

109

0 5 10 15 20 25 30 35 40 45 50
10−3

10−2

10−1

100

101

102

103

104

si
ze

-o
f-
ch

an
ge

co
m

p.
ti

m
e(

se
c.

)

Iteration

102

103

104

105

100 200 300 400
10−2

10−1

100

101

102

si
ze

-o
f-
ch

an
ge

co
m

p.
ti

m
e(

se
c.

)

Iteration

(a) dblp-coauthor (b) flickr-growth (c) wikipedia-growth

102

103

104

105

106

0 50 100 150 200 250
10−3

10−2

10−1

100

101

si
ze

-o
f-
ch

an
ge

co
m

p.
ti

m
e(

se
c.

)

Iteration

102
103
104
105

106
107
108
109

1010

0 2 4 6 8 10 12
10−2

10−1

100

101

102

103

104

105

si
ze

-o
f-
ch

an
ge

co
m

p.
ti

m
e(

se
c.

)

Iteration

102

103

104

105

106

1 2 3 4 5 6 7 8
10−2

10−1

100

si
ze

-o
f-
ch

an
ge

co
m

p.
ti

m
e(

se
c.

)

Iteration

(d) soc-livejournal (e) ca-cit-HepTh (f) facebook-friendship

change-in-number
change-in-edges

change-in-nodes
time

Figure 4.13: Performance of IMCE when the density of the graph changes over time.

are especially noticeable for graphs flickr-growth, soc-livejournal, ca-cit-HepTh. Some-

times, the computation time is lower in the denser state of the graph. This is because, (1) the

changes in the set of maximal cliques due to the insertion of a batch are smaller than the others

and (2) the computation time is dominated by the size of the changes in the set of maximal cliques.

Impact of graph density on decremental case: Table 4.4 and Table 4.5 shows the computation

time of the algorithm IMCED when the density of the initial graph changes. For doing this, at each

iteration, we remove the edges from the original graph for decreasing the density of the graph and

then perform the decremental computation on deleting a batch of next 100 edges. For example,

for dblp-coauthor graph, at first iteration we remove 1 million initial edges and on the rest of the

graph we perform the decremental computation, and in second iteration, we remove 2 million initial

edges and then perform the decremental computation. Similarly, we remove multiple of 500 edges

from the original graph RMAT-100-4000 in each iteration. We observe that for RMAT-100-4000

graph, the decrease in computation time is noticeable when the density of the initial graph changes

www.manaraa.com

72

Table 4.4: Decremental computation time (in sec.) of different algorithms upon changing density

of RMAT-100-4000 by deleting edges in reverse order (of the stream for incremental computation)

starting from the original graph. The reported computation time is for deleting a batch of next

100 edges from initial graph (at different density).

Initial Initial
IMCED STIXD MCMED

edges density

3.5K 0.7 243.8 1496 > hour

3K 0.6 4.2 15 94

2.5K 0.5 0.3 1.2 5

2K 0.4 0.06 0.6 0.6

1K 0.2 0.003 0.5 0.05

Table 4.5: Decremental computation time (in sec.) of different algorithms upon changing density

of dblp-coauthor by deleting edges in reverse order (of the stream for incremental computation)

starting from the original graph. The reported computation time is for deleting a batch of next

100 edges from initial graph (at different density).

Initial Initial
IMCED STIXD MCMED

edges density

4,179,996 5× 10−6 0.001 7.8 26.5

3,179,996 3.9× 10−6 0.001 6.7 21.2

2,179,996 2.7× 10−6 0.002 5.7 20.4

1,179,996 1.4× 10−6 0.005 4.9 15.8

179,996 2.2× 10−7 0.002 4.1 11.4

www.manaraa.com

73

whereas, for dblp-coauthor graph, no such trend is observable. This is because, RMAT-100-4000

graph is very dense (with density more than 0.8) whereas, dblp-coauthor graph is very sparse

(with density 6.3× 10−6). Therefore, the change in the density due to the deletion of edges is not

significant in dblp-coauthor as in RMAT-100-4000.

Table 4.6: Cumulative computation time for adding the same set of edges once in incremental com-

putation and then in decremental computation. The initial state of each graph for the incremental

computation is the final state for the same graph in the decremental computation and vice versa.

Batch size is 1000 for all graphs except RMAT, where batch size is 100.

Dataset IMCE IMCED

dblp-coauthor 1113 7219

wikipedia-growth 224 7627

facebook-friendship 101 342

RMAT-100-4000 564 4274

Incremental vs. decremental computation: Table 4.6 shows the comparison of IMCE and IMCED

on dblp-coauthor, facebook-friendship, wikipedia-growth, and RMAT-100-4000. In this

study, we started the incremental computation from the empty graph, and then starting from the

point where we stopped the incremental computation, we started decremental computation with

reverse order of the edges of the incremental stream. We observe that the overall computation time

for decremental computation is higher than the incremental computation on the same set of edges.

This is because, the computation cost for generating subsumed cliques is lower in the incremen-

tal computation than the computation cost of generating new cliques (that are subsumed in the

incremental computation) in the decremental computation as in the decremental computation, we

directly check for maximality instead of containment check by presenting the set of maximal cliques

of the graph before update as in the incremental computation.

www.manaraa.com

74

Table 4.7: Cumulative time (in sec.) for enumerating new and subsumed cliques. The number of

batches is shown in parentheses. Batch size ρ = 100 except ca-cit-HepTh, where ρ = 10 edges.

Dataset STIX OV MCMEI IMCE

dblp-coauthor (499) 3870 295 7212 0.6

flickr-growth (288) 3911 306 7214 0.2

wikipedia-growth (305) 4258 309 7216 0.3

soc-livejournal (156) 4077 299 7234 0.1

ca-cit-HepTh (310) 7291 17 11 1

facebook-friendship (1895) 7776 193 6853 1

Change-sensitiveness: The change in the computation time as a function of the size of change

can be seen in Figure 4.7, Figure 4.13, Figure 4.10 for incremental computation, in Figure 4.11 for

decremental computation, and in Figure 4.12 for fully dynamic computation.

We observe that the computation time is almost proportional to the size of change. Note that the

metrics change-in-nodes and change-in-edges better capture the notion of change-sensitiveness than

the metric change-in-number because, the actual cost of computation depends on the neighborhood

structure of the vertices.

As we have discussed in Section 4.4 that the fully dynamic case might not become change-

sensitive because there might be many intermediate cliques computed that are not in the final

output, we tried to reproduce this case on RMAT-100K-10M graph by creating edge stream grouped

by the source vertex. Indeed, we observed that there are many intermediate cliques generated as

a result of the change in the graph that are not in the final output, but this size (of intermediate

cliques that are not in the final output) is much smaller than the actual changes that are in the

final output. Therefore, this wasteful computation time is dominated by the time for computing

the actual change and thus we see the change-sensitive behavior in this case as well.

Memory consumption: Figure 4.15 shows the main memory used by IMCE. For this experi-

ment, we consider two different versions of the algorithm – one with storing the clique set ex-

plicitly, and one with only storing the hashes of the cliques. As expected, the use of a hash

www.manaraa.com

75

Table 4.8: Cumulative computation time (in sec.) of IMCE with different batch sizes. Note that ∆

is the maximum degree of the graph before update. Numbers in the parenthesis indicates the total

number of edges inserted incrementally.

Dataset ρ = 1 ρ = 10 ρ = 100 ρ = 1000 ρ = 3 log2 ∆

dblp-coauthor (5,179,996) 1659 1335 1198 1289 1252

flickr-growth (3649×103) 7028 6784 6465 7159 6062

wikipedia-growth (28,798×103) 6973 6567 7160 6995 6513

soc-livejournal (17,633×103) 6892 6876 7176 7095 6871

ca-cit-HepTh (19,000) 29 24 1076 3728 22

facebook-friendship (817,035) 100 97 97 94 96

function reduces the memory consumption considerably. The difference in memory consump-

tion between the two versions is especially visible in graphs flickr-growth, wikipedia-growth,

soc-livejournal and facebook-friendship, where the sizes of the maximal cliques are consid-

erably larger. We used the 64-bit murmur4 hash function on the canonical string representation

of a clique, for computing the hash signature. Note that there are some “spikes” in the plot for

dblp-coauthor, where the memory consumption suddenly increased. On this graph, we observed

that the number of maximal cliques at the point corresponding to the spike in memory usage also

increased suddenly and then subsequently decreased. We do not show the memory consumption for

ca-cit-HepTh because the number of maximal cliques are small compared to the other graph till

the state we executed the incremental computation for this graph, and therefore, the difference in

memory consumption with storing the maximal cliques and with storing the hashes of the maximal

cliques is not noticeable (less than 1 MB).

Cumulative computation time vs. batch size: We also studied the effect of the batch size (ρ)

on the cumulative computation time of IMCE, while keeping the total number of edges added the

same. For example a total of 10,000 edges would lead to 1000 batches if we used a batch size of 10,

and 100 batches if we used a batch size of 100. Table 4.8 shows the results for different batch sizes.

There is no observable trend found by varying the batch size for all the input graphs except for

4https://sites.google.com/site/murmurhash/

www.manaraa.com

76

Table 4.9: Incremental computation time (in sec.) of different algorithm upon changing the density

of dblp-coauthor at each computation with batch size 100.

Initial Initial
IMCE STIX OV MCMEI

edges density

1M 1.2× 10−6 < 1 ms. 16 1.6 16.2

2M 2.4× 10−6 < 1 ms. 20.8 0.9 21.3

3M 3.6× 10−6 0.02 376.2 4.8 28.8

4M 4.9× 10−6 0.002 26.2 1.6 33

5M 6× 10−6 0.003 42.4 2.4 33.8

Table 4.10: Incremental computation time (in sec.) as a function of the density of RMAT-100-4000

using batch size 100.

Initial Initial
IMCE STIX OV MCMEI

edges density

1K 0.2 0.005 1.4 0.01 0.05

2K 0.4 0.04 544 0.07 1

2.5K 0.5 0.2 > 1 hour 0.3 10

3K 0.6 2.6 > 1 hour 3 220.8

3.5K 0.7 146 > 1 hour 129 > 1 hour

www.manaraa.com

77

ca-cit-HepTh. For this graph, we found that with the increase in batch size from 10 to 100, the

number of subsumed clique candidates that are not actually subsumed, increases quite a lot. This

affects the overall computation time. The possible reason is that the density of other graphs are

smaller, the sizes of new cliques for those graphs are smaller, and the search for subsumed cliques is

short, even for large batch size. From this observation, it seems, for dense graph, it is good to use

small batch size to reduce the redundant computation in the subsumed clique computation such as

in the case of ca-cit-HepTh graph.

Comparison with Baseline: We compare with algorithm Naive (NaiveD), which recomputes the

set of maximal cliques each time there is an addition (deletion) of edges and show the results in

Table 4.11 (Table 4.12). As expected, both IMCE and IMCED significantly outperform Naive and

NaiveD when the number of edges inserted/deleted in a batch is small (less than 1 million for Naive

and less than 105, for NaiveD, in our experiments). When the number of edges is larger than 1

million, Naive outperforms IMCE. This is not surprising, since as the number of edges in a batch

increases, the size of the change also increases, and there is lesser benefit in using an incremental

algorithm.

However, Naive and NaiveD have an additional problem related to memory consumption, since

they have to store the set of maximal cliques in order to compute the symmetric difference. For

instance, NaiveD cannot execute even for a single edge deletion for wikipedia-growth, due to

insufficient memory. On flickr-growth and ca-cit-HepTh, NaiveD also comes to a near standstill

since it tries to store the set of maximal cliques in memory. Since IMCE and IMCED do not store the

set of all maximal cliques, they do not run into similar issues of memory consumption.

Comparison with prior works: We also compare the computation time of IMCE with prior works

as shown in Table 4.7. Clearly, IMCE is many orders of magnitude (more than 1000) faster than

prior algorithms for most of the input graphs except for ca-cit-HepTh and facebook-friendship

because, (1) these graphs are of small sizes compared to the other graphs and (2) the number of

maximal cliques at the initial states of these graphs are small compared to the other graphs. One

www.manaraa.com

78

reason why IMCE is so much faster than prior works is that IMCE systematically selects a local

subgraph of the entire graph to search for new and subsumed maximal cliques. This reduces the

computation effort considerably. OV tried to achieve such a local computation but OV is not provably

change-sensitive for new maximal cliques, and its computation of subsumed cliques is expensive

since the algorithm iterates over the entire set of maximal cliques for deriving subsumed cliques. A

similar strategy of iterating over the entire set of maximal cliques for deriving maximal clique set

of the updated graph as in MCMEI makes the algorithm less efficient. Next we compare IMCE with

STIX, ov, and MCMEI upon changing (increasing) the density of the input graphs and we present

the results in Table 4.9 and Table 4.10 and compare IMCED with STIXD and MCMED upon changing

(decreasing) the density of the input graph and we present the results in Table 4.5 and Table 4.4.

Note that we cannot compare on other larger graphs because all of the prior works require the set

of maximal cliques of the initial graph to start the computation and the number of maximal cliques

at different states of graph are so large that they cannot fit in the main memory. We observe

that both IMCE and IMCED are magnitude of order faster than the prior works which is as expected

except that for RMAT-100-4000 where the performance of OV is similar to that of IMCE. This is

because the graph RMAT-100-4000 is small and the number of maximal cliques of this graph is also

small compared to the other graphs.

Table 4.11: Comparison of incremental computation time (sec.) of IMCE and Naive for adding a

single batch with different batch sizes starting from a graph with 1 million initial edges. ρ indicates

the batch size.

DataSet
ρ = 100 ρ = 1000 ρ = 10000 ρ = 100000 ρ = 1000000

Naive IMCE Naive IMCE Naive IMCE Naive IMCE Naive IMCE

dblp-coauthor 4.5 0.001 4.6 0.009 4.8 0.07 5 1.5 9.5 67.3

flickr-growth 10 0.002 10 0.03 9.6 0.4 11 3.4 50.9 127

wikipedia-growth 8.7 0.003 8.5 0.02 9.4 0.2 9.7 2.4 21.9 25.9

Summary of results: To summarize the results of our experiments, we note the following: (1) IMCE

and IMCED are change-sensitive: the computation time to enumerate the change in the set of

maximal cliques is proportional to the magnitude of the change in the set of maximal cliques.

www.manaraa.com

79

0
50

100
150
200
250
300
350
400
450
500

1000 2000 3000 4000 5000

m
em

or
y

co
st

(M
B

)

Iteration number

(a) dblp-coauthor

0
200
400
600
800

1000
1200
1400

900 1800 2700

m
em

or
y

co
st

(M
B

)
Iteration number

(b) flickr-growth

0
500

1000
1500
2000
2500
3000
3500
4000

5000 10000 15000 20000

m
em

or
y

co
st

(M
B

)

Iteration number

(c) wikipedia-growth

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000

4000 8000 12000 16000

m
em

or
y

co
st

(M
B

)

Iteration number

(d) soc-livejournal

0
20
40
60
80

100
120
140
160
180

200 400 600 800

m
em

or
y

co
st

(M
B

)

Iteration number

(e) facebook-friendship

with hash without hash

Figure 4.15: Memory cost of IMCE with and without using hash function (ρ = 1000).

Table 4.12: Comparison of decremental computation time (sec.) of IMCED and NaiveD for deleting

a single batch with different batch sizes starting from the original graph. ρ indicates the batch size.

DataSet
ρ = 100 ρ = 1000 ρ = 10000 ρ = 100000

NaiveD IMCED NaiveD IMCED NaiveD IMCED NaiveD IMCED

dblp-coauthor 22.6 0.02 22.3 0.2 22.6 6.4 25.3 > 720

facebook-friendship 19.4 0.3 19.5 0.6 19.2 4.8 14.9 192

www.manaraa.com

80

(2) IMCE and IMCED are two to three orders of magnitude faster than prior algorithms. (3) The

computation time for the maintenance increases when the density of the graph increases. (4) the

use of hash signatures for storing maximal cliques greatly reduces the memory consumption.

www.manaraa.com

81

CHAPTER 5. PARALLEL MAXIMAL CLIQUE ENUMERATION ON

STATIC AND DYNAMIC GRAPHS

5.1 Introduction

Sequential approaches to MCE can lead to high runtimes on large graphs. Based on our experi-

ments, a real-world network Orkut with approximately 3 million vertices, 117 million edges requires

approximately 8 hours to enumerate all maximal cliques using an efficient sequential algorithm

due to Tomita et al. [143]. Graphs that are larger and/or more complex cannot be handled by

sequential algorithms with a reasonable turnaround time, and the high computational complexity

of MCE calls for parallel methods.

In this work, we consider shared-memory parallel methods for MCE. In the shared-memory

model, the input graph can reside within globally shared memory, and multiple threads can work

in parallel on enumerating maximal cliques. Shared-memory parallelism is attractive today since

machines with tens to hundreds of cores and hundreds of Gigabytes of shared-memory are readily

available. The advantage of using shared-memory approach over a distributed memory approach

are: (1) Unlike distributed memory, it is not necessary to divide the graph into subgraphs and

communicate the subgraphs among processors. In shared-memory, different threads can work

concurrently on a single shared copy of the graph (2) Sub-problems generated during MCE are

often highly imbalanced, and it is hard to predict which sub-problems are small and which are

large, while initially dividing the problem into sub-problems. With a shared-memory method, it

is possible to further subdivide sub-problems and process them in parallel. With a distributed

memory method, handling such imbalances in sub-problem sizes requires greater coordination and

is more complex.

To show how imbalanced the sub-problems can be, in Fig. 5.1, we show data for two real-world

networks As-Skitter and Wiki-Talk. These two networks have millions of edges and tens of millions

www.manaraa.com

82

99.619% of
sub-problems
together

10%

0.381% of
sub-problems

together 90%

Number of Maximal Cliques

99.998% of
sub-problems
together

10%

0.002% of
sub-problems

together 90%

Number of Maximal Cliques

(a) As-Skitter (b) Wiki-Talk

99.978% of
sub-problems
together

10%

0.022% of
sub-problems

together 90%

Runtime of Maximal Clique Enumeration

99.996% of
sub-problems
together

10%

0.004% of
sub-problems

together 90%

Runtime of Maximal Clique Enumeration

(c) As-Skitter (d) Wiki-Talk

Figure 5.1: Imbalanced in sizes of sub-problems for MCE, where each sub-problem corresponds to

the maximal cliques of a single vertex in the given graph. (a) As-Skitter: 0.3% of sub-problems

form 90% of total number of maximal cliques. (b) Wiki-Talk: only 0.002% of sub-problems yield

90% of all maximal cliques. (c) As-Skitter: 0.02% of sub-problems take 90% of total runtime of

MCE. (d) Wiki-Talk: only 0.004% of sub-problems take 90% of total runtime of MCE

of maximal cliques (for statistics on these networks, see Section 5.5). Consider a division of the

MCE problem into per-vertex sub-problems, where each sub-problem corresponds to the set of

all maximal cliques containing a single vertex in a network, and suppose these sub-problems were

solved independently, while taking care to prune out search for the same maximal clique multiple

times. For As-Skitter, we observed that 90% of total runtime required for MCE is taken by only

0.022% of the sub-problems, and less than 0.4% of all sub-problems yield 90% of all maximal cliques.

Even larger skew in sub-problem sizes is observed in the Wiki-Talk graph. This data demonstrates

that load balancing is a central issue for parallel MCE.

www.manaraa.com

83

Prior works on parallel MCE have largely focused on distributed memory algorithms [151, 129,

95, 138]. There are a few works on shared-memory parallel algorithms [158, 45, 87]. However, these

algorithms do not scale to larger graphs due to memory or computational bottlenecks – either the

algorithms miss out significant pruning opportunities as in [45] or they need to generate a large

number of non-maximal cliques as in [158, 87].

Roadmap. The rest of the sections are organized as follows. We present preliminaries in Sec-

tion 5.2, followed by a description of algorithms for a static graph in Section 5.3, algorithms for a

dynamic graph in Section 5.4, and experimental evaluation in Section 5.5.

5.2 Preliminaries

We consider a simple undirected graph without self loops or multiple edges. For graph G, let

V (G) denote the set of vertices in G and E(G) denote the set of edges in G. Let n denote the size

of V (G), and m denote the size of E(G). For vertex u ∈ V (G), let ΓG(u) denote the set of vertices

adjacent to u in G. When the graph G is clear from the context, we use Γ(u) to mean ΓG(u). Let

C(G) denote the set of all maximal cliques in G.

Parallel Cost Model: For analyzing our shared-memory parallel algorithms, we use the CRCW

PRAM model [18], which is a model of shared parallel computation that assumes concurrent reads

and concurrent writes. Our parallel algorithm can also work in other related models of shared-

memory such as EREW PRAM (exclusive reads and exclusive writes), with a logarithmic factor

increase in work as well as parallel depth. We measure the effectiveness of the parallel algorithm

using the work-depth model [18]. Here, the “work” of a parallel algorithm is equal to the total

number of operations of the parallel algorithm, and the “depth” (also called the “parallel time” or

the “span”) is the longest chain of dependent computations in the algorithm. A parallel algorithm

is said to be work-efficient if its total work is of the same order as the work due to the best sequential

algorithm1. We aim for work-efficient algorithms with a low depth, ideally poly-logarithmic in the

1Note that work-efficiency in the CRCW PRAM model does not imply work-efficiency in the EREW PRAM model

www.manaraa.com

84

size of the input. Using Brent’s theorem [18], it can be seen that a parallel algorithm on input size

n with a depth of d can theoretically achieve Θ(p) speedup on p processors as long as p = O(n/d).

We next restate a result on concurrent hash tables [130] that we use in proving the work and

depth bounds of our parallel algorithms.

Theorem 5 (Theorem 3.15 [130]). There is an implementation of a hash table, which, given a hash

function with expected uniform distribution, performs n1 insert, n2 delete and n3 find operations in

parallel using O(n1 + n2 + n3) work and O(1) depth on average.

5.3 Parallel MCE Algorithms on a Static Graph

In this section, we present new shared-memory parallel algorithms for MCE. We first describe

a parallel algorithm ParTTT, a parallelization of the sequential TTT algorithm and an analysis of its

theoretical properties. Then, we discuss bottlenecks in ParTTT that arise in practice, leading us to

another algorithm ParMCE with better practical performance. ParMCE uses ParTTT as a subroutine

– it creates appropriate sub-problems that can be solved in parallel, and hands off the enumeration

task to ParTTT.

5.3.1 Algorithm ParTTT

Our first algorithm ParTTT is a work-efficient parallelization of the sequential TTT algorithm.

The two main components of TTT (Algorithm 1) are (1) Selection of the pivot element (Line 3) and

(2) Sequential backtracking for extending candidate cliques until all maximal cliques are explored

(Line 5 to Line 11). We discuss how to parallelize each of these steps.

Parallel Pivot Selection: Within a single recursive call of ParTTT, the pivot element is

computed in parallel using two steps, as described in ParPivot (Algorithm 7). In the first step, the

size of the intersection cand∩ Γ(u) is computed in parallel for each vertex u ∈ cand∪ fini. In the

second step, the vertex with the maximum intersection size is selected. The parallel algorithm for

www.manaraa.com

85

selecting a pivot is presented in Algorithm 7. The following lemma proves that the parallel pivot

selection is work-efficient with logarithmic depth:

Lemma 16. The total work of ParPivot is O(
∑

w∈cand∪fini(min{|cand|, |Γ(w)|})), which is O(n2),

and depth is O(log n).

Proof. If the sets cand and Γ(w) are stored as hashsets, then for vertex w the size tw = |intersect(cand,Γ(w))|

can be computed sequentially in time O(min{|cand|, |Γ(w)|}) – the intersection of two sets S1 and

S2 can be found by considering the smaller set among the two, say S2, and searching for its elements

within the larger set, say S1. It is possible to parallelize the computation of intersect(S1, S2) by

executing the searches elements in S2 in parallel, followed by counting the number of elements that

lie in the intersection, which can also be done in parallel in a work-efficient manner using O(1) depth

using Theorem 5. Since computing the maximum of a set of n numbers can be accomplished using

work O(n) and depth O(log n), for vertex w, tw can be computed using work O(min{|cand|, |Γ(w)|})

and depth O(log n). Once the different tw are computed, argmax({tw : w ∈ cand ∪ fini}) can

be computed using additional work |cand ∪ fini| and depth O(log n). Hence, the total work of

ParPivot is O(
∑

w∈cand∪fini(min{|cand|, |Γ(w)|}). Since the size of cand, fini, and Γ(w) are

bounded by n, this is O(n2), but typically much smaller.

Algorithm 7: ParPivot(G,K, cand, fini)

Input: G: Input graph; K: A clique in G that may be further extended; cand: A

set of vertices that may extend K; fini: A set of vertices that have been

used to extend K.

Output: pivot vertex v ∈ cand ∪ fini.

1 for w ∈ cand ∪ fini do in parallel

2 In parallel, compute tw ← |intersect(cand,ΓG(w))|
3 In parallel, find v ← argmax({tw : w ∈ cand ∪ fini})
4 return v

Parallelization of Backtracking: We first note that there is a sequential dependency among

the different iterations within a recursive call of TTT. In particular, the contents of the sets cand and

www.manaraa.com

86

fini in a given iteration are derived from the contents of cand and fini in the previous iteration.

Such sequential dependence of updates of cand and fini restricts us from calling the recursive TTT

for different vertices of ext in parallel. To remove this dependency, we adopt a different view of

TTT which enables us to make the recursive calls in parallel. The elements of ext, the vertices to

be considered for extending a maximal clique, are arranged in a predefined total order. Then, we

unroll the loop and explicitly compute the parameters cand and fini for recursive calls.

Suppose 〈v1, v2, ..., vκ〉 is the order of vertices in ext to be processed. Each vertex vi ∈ ext, once

added to K, should be removed from further consideration from cand. To ensure this, in ParTTT,

we explicitly remove vertices v1, v2, ..., vi−1 from cand and add them to fini, before making the

recursive calls. As a consequence, parameters of the ith iteration are computed independently of

prior iterations.

Algorithm 8: ParTTT(G,K, cand, fini)

Input: G - The input graph

K - a non-maximal clique to extend

cand - Set of vertices that may extend K

fini - vertices that have been used to extend K

Output: Set of all maximal cliques of G containing K and vertices from cand but

not containing any vertex from fini

1 if (cand = ∅) & (fini = ∅) then

2 Output K and return

3 pivot← ParPivot(G, cand, fini)

4 ext[1..κ]← cand− ΓG(pivot) // in parallel

5 for i ∈ [1..κ] do in parallel

6 q ← ext[i]

7 Kq ← K ∪ {q}
8 candq ← intersect(cand \ ext[1..i− 1],ΓG(q))

9 finiq ← intersect(fini ∪ ext[1..i− 1],ΓG(q))

10 ParTTT(G,Kq, candq, finiq)

Now we prove the work efficiency and low depth of ParTTT in the following lemma:

www.manaraa.com

87

Lemma 17. Total work of ParTTT (Algorithm 8) is O(3n/3) and depth is O(M log n) where n is

the number of vertices in the graph and M is the size of a maximum clique in G.

Proof. First, we analyze the total work. Note that the computational tasks in ParTTT is differ-

ent from TTT at Line 8 and Line 9 of ParTTT where at an iteration i, we remove all vertices

{v1, v2, ..., vi−1} from cand and add all these vertices to fini as opposed to the removal of a single

vertex vi−1 from cand and addition of that vertex to fini as in TTT (Line 8 and Line 9 of Algo-

rithm 1). Therefore, in ParTTT, additional O(n) work is required due to independent computations

of candq and finiq. The total work, excluding the call to ParPivot is O(n2). Adding up the work

of ParPivot, which requires O(n2) work, requires O(n2) total work for each single call of ParTTT

excluding further recursive calls (Algorithm 8, Line 10), which is same as in original sequential

algorithm TTT (Section 4, [143]). Hence, using Lemma 2 and Theorem 3 of [143], we infer that the

total work of ParTTT is the same as the sequential algorithm TTT and is bounded by O(3n/3).

Next we analyze the depth of the algorithm. The depth of ParTTT consists of the (sum of the)

following components: (1) Depth of ParPivot, (2) Depth of computation of ext, (3) Maximum

depth of an iteration in the for loop from Line 5 to Line 10. According to Lemma 16, the depth

of ParPivot is O(log n). The depth of computing ext is O(log n) because it takes O(1) time to

check whether an element in cand is in the neighborhood of pivot by doing a set membership

check on the set of vertices that are adjacent to pivot. Similarly, the depth of computing candq

and finiq at Line 8 and Line 9 are O(log n) each. The remaining is the depth of the call of ParTTT

at Line 10. Observe that the recursive call of ParTTT continues until there is no further vertex to

add for expanding K, and this depth can be at most the size of the maximum clique which is M

because, at each recursive call of ParTTT the size of K is increased by 1. Thus, the overall depth

of ParTTT is O(M log n).

Corollary 1. Using P parallel processors that shared-memory, ParTTT (Algorithm 8) is a parallel

algorithm for MCE, and can achieve a worst case parallel time of O
(

3n/3

M logn + P
)

using P parallel

processors. This is work-efficient as long as P = O(3n/3

M logn), and also work-optimal.

www.manaraa.com

88

Proof. The parallel time follows from using Brent’s theorem [18], which states that the parallel

time using P processors is O(w/d+P), where w and d are the work and the depth of the algorithm

respectively. If the number of processors P = O
(

3n/3

M logn

)
, then using Lemma 17 the parallel time

is O
(

max{3n/3

P ,M log n}
)

= O
(
3n/3

P

)
. The total work across all processors is O(3n/3), which is

worst-case optimal, since the size of the output can be as large as 3n/3 maximal cliques (Moon and

Moser [104]).

5.3.2 Algorithm ParMCE

While ParTTT is a theoretically work-efficient parallel algorithm, we note that its runtime can be

further improved. While the worst case work complexity of ParPivot matches that of the pivoting

routine in TTT, in practice, the work in ParTTT can be higher, since computation of candq and

finiq has additional overhead that increases as the size of the candq and finiq lists increase. This

can result in a lower speedup than the theoretically expected one.

We set out to improve on this to derive a more efficient parallel implementation through a more

selective use of ParPivot in that the cost of pivoting can be reduced by carefully choosing many

pivots in parallel instead of a single pivot element as in ParTTT at the beginning of the algorithm.

We first note that the cost of ParPivot is the highest during the iteration when the parameter K

(clique so far) is empty. During this iteration, the set of vertices still to be considered, cand∪fini,

can be high, as large as the number of vertices in the graph. To improve upon this, we can perform

the first few steps of pivoting, when K is empty, using a sequential algorithm. Once the set K has

at least one element in it, the number of the vertices in cand ∪ fini still to be considered, drops

down to no more than the size of the intersection of neighborhoods of all vertices in K, which is

typically a number much smaller than the number of vertices in the graph (it is smaller than the

smallest degree of a vertex in K). Problem instances with K set to a single vertex can be seen as

sub-problems and on each of these sub-problems, the overhead of ParPivot is much smaller since

the number of vertices that have to be dealt with is also much smaller.

www.manaraa.com

89

Based on this observation, we present a parallel algorithm ParMCE that works as follows. The

algorithm can be viewed as considering for each vertex v ∈ V (G), a subgraph Gv that is induced

by the vertex v and its neighborhood ΓG(v). It enumerates all maximal cliques from each subgraph

Gv in parallel using ParTTT. While processing sub-problem Gv, it is important to not enumerate

maximal cliques that are being enumerated elsewhere, in other sub-problems. To handle this, the

algorithm considers a specific ordering of all vertices in V such that v is the least ranked vertex

in each maximal clique enumerated from Gv. The subgraphs Gv for each vertex v are handled in

parallel – these subgraphs need not be processed in any particular order. However, the ordering

allows us to populate the cand and fini sets accordingly, so that each maximal clique is enumerated

in exactly one sub-problem. The order in which the vertices are considered is defined by a “rank”

function rank, which indicates the position of a vertex in the total order. The specific ordering

that is used influences the total work of the algorithm, as well as the load balance of the parallel

implementation.

Load Balancing: Observe that the sizes of the subgraphs Gv may vary widely because of two

reasons: (1) the subgraphs themselves may be of different sizes, depending on the vertex degrees,

and (2) the number of maximal cliques and the sizes of the maximal cliques containing v can vary

widely from one vertex to another. Clearly, the sub-problems that deal with a large number of

maximal cliques or maximal cliques of a large size are more expensive than others.

In order to maintain the size of the sub-problems approximately balanced, we use an idea from

PECO [138], where we choose the rank function on the vertices in such a way that for any two

vertices v and w, rank(v) > rank(w) if the complexity of enumerating maximal cliques from Gv

is higher than the complexity of enumerating maximal cliques from Gw. By giving a higher rank

to v than w, we are decreasing the complexity of the sub-problem Gv, since the sub-problem at Gv

need not enumerate maximal cliques that involve any vertex whose rank is less than v. Hence, the

higher the rank of vertex v, the lower is its “share” (of maximal cliques it belongs to) of maximal

cliques in Gv. We use this idea for approximately balancing the workload across sub-problems. The

additional enhancements in ParMCE, when compared with the idea from PECO are as follows: (1) In

www.manaraa.com

90

PECO the algorithm is designed for distributed memory so that the subgraphs and sub-problems

have to be explicitly copied across the network, and (2) In ParMCE, the vertex specific sub-problem,

dealing with Gv is itself handled through a parallel algorithm, ParTTT. However, in PECO, the

sub-problem for each vertex was handled through a sequential algorithm.

Note that it is computationally expensive to accurately count the number of maximal cliques

within Gv, and hence it is not possible to compute the rank of each vertex exactly according to

the complexity of handling Gv. Instead, we estimate the complexity of handling Gv using some

easy-to-evaluate metrics on the subgraphs. In particular, we consider the following:

• Degree Based Ranking: For vertex v, define rank(v) = (d(v), id(v)) where d(v) and id(v)

are degree and identifier of v respectively. For two vertices v and w, rank(v) > rank(w) if

d(v) > d(w) or d(v) = d(w) and id(v) > id(w); rank(v) < rank(w) otherwise.

• Triangle Count Based Ranking: For vertex v, define rank(v) = (t(v), id(v)) where t(v) is

the number of triangles containing vertex v. This is more expensive to compute than degree

based ranking, but may yield a better estimate of the complexity of maximal cliques within

Gv.

• Degeneracy Based Ranking [49]: For a vertex v, define rank(v) = (degen(v), id(v)) where

degen(v) is the degeneracy of a vertex v. A vertex v has degeneracy number k when it belongs

to a k-core but no (k+ 1)-core where a k-core is a maximal induced subgraph with minimum

degree of each vertex k in that subgraph. A computational overhead of using this ranking is

due to computing the degeneracy of the vertices which takes O(n + m) time where n is the

number of vertices and m is the number of edges.

The different implementations of ParMCE using degree, triangle, and degeneracy rankings are

called as ParMCEDegree, ParMCETri, ParMCEDegen respectively.

www.manaraa.com

91

Algorithm 9: ParMCE(G)

Input: G: The input graph.

Output: C(G): set of all maximal cliques of G.

1 for v ∈ V (G) do in parallel

2 Create Gv, the subgraph of G induced by ΓG(v) ∪ {v}
3 K ← {v}, cand← φ, fini← φ

4 for w ∈ ΓG(v) do in parallel

5 if rank(w) > rank(v) then cand← cand ∪ {w}
6 else fini← fini ∪ {w}
7 ParTTT(Gv,K, cand, fini)

5.4 Parallel MCE Algorithm on a Dynamic Graph

When the graph changes over time due to addition of edges, the maximal cliques of the updated

graph also changes. The update in the set of maximal cliques consists of (1) the set of new maximal

cliques- the maximal cliques that are newly formed and (2) the set of subsumed cliques - maximal

cliques of the original graph that are subsumed by the new maximal cliques. The combined set of

new and subsumed maximal cliques is called the set of changes and the size of this set refers to the

size of change in the set of maximal cliques.

It is important to update the set of maximal cliques in a dynamic graph when it serves as

the building block in many important problems. For example, the work of Chateau et al. [27] on

maintaining common intervals among genomes, the work of Duan et al. [46] on incremental k-clique

clustering, the work of Hussain et al. [67] on maintaining the maximum range-sum query over a

point stream use maximal clique as the building block in an appropriately defined graph.

Note that the size of change can be as small as O(1) and can be as large as exponential in

the size of the graph for addition of a single new edge. For example, consider a graph of size n

which is missing a single edge from being a clique. The size of change is only 3 when that missing

edge is added to the graph because there will be only one new maximal clique of size n and two

www.manaraa.com

92

Algorithm 10: ParIMCENew(G,H)

Input: G - input graph

H - Set of ρ edges being added to G

Output: Cliques in Λnew = C(G+H) \ C(G)

1 G′ ← G+H

2 Consider edges of H in an arbitrary order e1, e2, . . . , eρ
3 for i← 1, 2, . . . , ρ do in parallel

4 e← ei = (u, v)

5 Ve ← {u, v} ∪ {ΓG′(u) ∩ ΓG′(v)}
6 G ← Graph induced by Ve on G′

7 K ← {u, v}
8 cand← Ve \ {u, v} ; fini← ∅
9 S ← ParTTTExcludeEdges(G,K, cand, fini, {e1, e2, ..., ei−1})

10 Λnew ← Λnew ∪ S

subsumed cliques each of size (n−1). On the other hand consider a Moon-Moser graph [104] of size

n. Addition of a single edge to this graph makes the size of the changes in the order of O(3n/3).

In a previous work, we presented a sequential algorithm IMCE [38] for solving the problem of

updating the set of maximal cliques in a dynamic graph in an efficient manner in an incremental

setting when new edges are added to the graph. IMCE consists of FastIMCENewClq for computing

new maximal cliques and IMCESubClq for computing subsumed cliques. However, IMCE is still

unable to update the set of maximal cliques when the size of change is large. For instance, it takes

IMCE around 9.4 hours to add approximately 90000 edges to the Ca-Cit-HepTh graph (with original

graph density 0.01) incrementally, starting from the empty graph. The high computational cost of

IMCE calls for parallel methods.

In this section we present parallel algorithms for enumerating the set of new and subsumed

cliques when an edge set H = {e1, e2, ..., eρ} is added to a graph G. Our parallel algorithms are

based on IMCE [38]. In this work, we focus on (1) processing new edges in parallel, (2) enumerating

new maximal cliques using ParTTT, and (3) Parallelizing IMCESubClq [38]. First we describe an

efficient parallel algorithm for generating new maximal cliques, i.e, the maximal cliques in G + H

www.manaraa.com

93

Table 5.1: Brief description of the incremental algorithms in this work.

Objective
Sequential

Algorithm [38]
Parallel Algorithm

(this work)
Overview of Parallel Algorithms

Enumerating new

maximal cliques
FastIMCENewClq ParIMCENew

(1) Process new edges in parallel.

(2) Enumerate maximal cliques using ParTTTExcludeEdges.

Enumerating

subsumed cliques
IMCESubClq ParIMCESub

(1) Generate candidates in parallel

(executing inner for loop of IMCESubClq in parallel).

(2) Process each candidate in parallel

(executing candidate processing step of IMCESubClq in parallel).

that are not present in G and then an efficient parallel algorithm for generating subsumed maximal

cliques, i.e, the cliques which are maximal in G but not maximal in G+H. We present a shared-

memory parallel algorithm ParIMCE for the incremental maintenance of maximal cliques. ParIMCE

consists of (1) algorithm ParIMCENew for enumerating new maximal cliques and (2) algorithm

ParIMCESub for enumerating subsumed cliques. A brief description of the algorithms is discussed

in Table 5.1.

5.4.1 Parallel Enumeration of New Maximal Cliques

Here, we present a parallel algorithm ParIMCENew for enumerating the set of new maximal

cliques when a set of new edges is added. The idea is that we iterate over new edges in parallel and

at each (parallel) iteration we construct a subgraph of the original graph and enumerate the set of all

maximal cliques in that subgraph. We present an efficient parallel algorithm ParTTTExcludeEdges

(Algorithm 11) for this enumeration. The description of ParIMCENew is presented in Algorithm 10.

Note that ParIMCENew is based upon an existing sequential algorithm FastIMCENewClq [38] for

enumerating new maximal clique that uses TTTExcludeEdges (Algorithm 3) [38] that enumerates all

new maximal cliques without any duplication. ParTTTExcludeEdges is based upon the duplicate

avoidance technique similar to the technique used in TTTExcludeEdges and the parallelization

technique similar to ParTTT. More specifically, ParTTTExcludeEdges follows a global ordering

of the new edges to avoid redundancy in the enumeration process. Note that the correctness of

ParIMCENew is followed by the correctness of the sequential algorithm FastIMCENewClq. Following

lemma shows the work efficiency and depth of ParIMCENew:

www.manaraa.com

94

Algorithm 11: ParTTTExcludeEdges(G,K, cand, fini, E)

Input: G - The input graph

K - Set of vertices forming a clique

cand - Set of vertices that may extend K

fini - vertices that have been used to extend K

E - set of edges to ignore

1 if (cand = ∅) & (fini = ∅) then

2 Output K // K is a maximal clique

3 return

4 pivot← ParPivot(G, cand, fini)

5 ext[1..κ]← cand− ΓG(pivot) // in parallel

6 for i ∈ [1..κ] do in parallel

7 q ← ext[i]

8 Kq ← K ∪ {q}
9 if Kq ∩ E 6= ∅ then

10 return

11 candq ← intersect(cand \ ext[1..i− 1],ΓG(q))

12 finiq ← intersect(fini ∪ ext[1..i− 1],ΓG(q))

13 ParTTTExcludeEdges(G,Kq, candq, finiq, E)

www.manaraa.com

95

Lemma 18. Given a graph G and a new edge set H, ParIMCENew is work-efficient, i.e, the total

work is of the same order of the time complexity of FastIMCENewClq. The depth of ParIMCENew

is O(∆2 + M log ∆) where ∆ is the maximum degree and M is the size of a maximum clique in

G+H.

Proof. First we prove the work efficiency of ParIMCENew followed by the depth of the algorithm.

Note that, for proving the work-efficiency we will show that procedure at each line from Line 4

to Line 10 of ParIMCENew is work-efficient. Line 4 to Line 8 are work-efficient because, all these

procedures are sequential in ParIMCENew. The parallel set operations at Line 5 and Line 10 is

work-efficient using Theorem 5. Now we will show the work efficiency of ParIMCENew as follows.

If we disregard Lines 7-10 of TTTExcludeEdges and Lines 9-10 of ParTTTExcludeEdges then the

total work of ParTTTExcludeEdges is the same as the time complexity of ParTTT following the work

efficiency of ParTTT. Next, we say that the time complexity of Lines 7-10 of TTTExcludeEdges is the

same as the time complexity of Lines 9-10 of ParTTTExcludeEdges because in TTTExcludeEdges

we use two global hashtables - one for maintaining the adjacent vertices of the currently processing

vertex in the set of new edges and another for maintaining the indexes of the new edges that we

define before the beginning of the enumeration of new maximal cliques. With these two hashtables,

we can check the if condition at Line 9 of ParTTTExcludeEdges in parallel with total work O(n)

using Theorem 5 which is of the same order of the time complexity of performing if condition check

at Line 7 of TTTExcludeEdges. This completes the proof of work efficiency of ParTTTExcludeEdges.

For proving the depth of ParIMCENew, note that the depth is the sum of the depths of procedures

at Line 5, 6, 9, 10 of ParIMCENew because the cost of all operations in other lines are O(1) each.

The depth of executing intersection in parallel at Line 5 is O(1) using Theorem 5, the depth of the

procedure for constructing the graph at Line 6 is O(∆2) as we construct the graph sequentially, the

depth ParTTTExcludeEdges is O(M log ∆) following the depth of ParTTT, and the depth of Line 10

is O(1) because we can do this operation in parallel using Theorem 5. Thus, the overall depth of

ParIMCENew follows.

www.manaraa.com

96

5.4.2 Parallel Enumeration of Subsumed Cliques

Algorithm 12: ParIMCESub(G,H,C,Λnew)

Input: G - Input Graph

H - Edge set being added to G

C - Set of maximal cliques in G

Λnew - set of new maximal cliques in G+H

Output: All cliques in Λdel = C(G) \ C(G+H)

1 Λdel ← ∅
2 for c ∈ Λnew do in parallel

3 S ← {c}
4 for e = (u, v) ∈ E(c) ∩H do

5 S′ ← φ

6 for c′ ∈ S do in parallel

7 if e ∈ E(c′) then

8 c1 = c′ \ {u} ; c2 = c′ \ {v}
9 S′ ← S′ ∪ c1 ; S′ ← S′ ∪ c2

10 else

11 S′ ← S′ ∪ c′

12 S ← S′

13 for c′ ∈ S do in parallel

14 if c′ ∈ C then

15 Λdel ← Λdel ∪ c′
16 C ← C \ c′

In this section we present a parallel algorithm ParIMCESub based on the sequential algorithm

IMCESubClq [38] for the enumeration of subsumed cliques. In ParIMCESub we perform parallelization

in doing the following : (1) removing a single new edges from all the candidates in parallel and

(2) checking for the candidacy of the subsumed cliques in parallel. We present ParIMCESub in

Algorithm 12. In the following lemma we will show the work efficiency and depth of ParIMCESub:

Lemma 19. Given a graph G and a new edge set H, ParIMCESub is work-efficient; the total

work is of the same order of the time complexity of IMCESubClq. The depth of ParIMCENew is

www.manaraa.com

97

O(min{M2, ρ}) for processing each new maximal clique where M is the size of a maximum clique

in G+H and ρ is the size of H.

Proof. First note that the procedure of ParIMCESub is exactly same as the procedure of IMCESubClq

except for the parallel loops at Line 6 and Line 13 of ParIMCESub whereas these loops are sequential

in IMCESubClq. As all the computations in ParIMCESub is exactly same as the computations in

IMCESubClq except for the loop parallelization, ParIMCESub is work-efficient.

For proving the parallel depth of ParIMCESub, first note that all the elements of S at Line 6

of ParIMCESub are processed in parallel and the total cost of executing Lines 7 to 11 is O(1).

In addition, the depth of the operation at Line 12 of ParIMCESub is O(1) using the concurrent

hashtable. Therefore, the overall depth of the procedures from Line 4 to Line 12 is the number of

new edges in a new maximal clique c considered at Line 2 of ParIMCESub which is O(min{M2, ρ}).

Next, the depth of Line 14 to 16 is O(1) because, it only takes O(1) to execute Line 15 and 16 using

Theorem 5. Therefore, for each new maximal clique, the depth of the procedure for enumerating

all cliques subsumed by it is O(min{M2, ρ}).

5.5 Evaluation

In this section, we experimentally evaluate the performance of our shared-memory parallel static

(ParTTT and ParMCE) and dynamic (ParIMCE) algorithms for MCE on static and dynamic (real world

and synthetic) graphs to show the parallel speedup and scalability of our algorithms over efficient

sequential algorithms TTT and IMCE respectively. We also compare our algorithms with state-of-the-

art parallel algorithms for MCE to show that the performance of our algorithm has substantially

improved over the prior works. We run all the experiments on a computer configured with Intel

Xeon (R) CPU E5-4620 running at 2.20GHz , with 32 physical cores (4 NUMA nodes each with 8

cores) and 1 TB RAM.

www.manaraa.com

98

5.5.1 Datasets

We use eight different real-world static and dynamic networks from publicly available reposito-

ries KONECT [83], SNAP [86], and Network Repository [122] for doing the experiments. Dataset

statistics are summarized in Table 5.2. For our experiments, we convert these networks to simple

undirected graphs without self loops and without duplicate edges by removing self-loops, edges

weights, parallel edges, and edge directions.

We consider DBLP-Coauthor, As-Skitter, Wikipedia, Wiki-Talk, and Orkut networks for the

evaluation of the algorithms on static graphs and DBLP-Coauthor, Flickr, Wikipedia, LiveJournal,

and Ca-Cit-HepTh networks for the evaluation of the algorithms on dynamic graphs.

DBLP-Coauthor shows the collaboration of authors of papers from DBLP computer science bib-

liography. In this graph, vertices represent authors, and there is an edge between two authors

if they have published a paper [122]. As-Skitter is an Internet topology graph which represents

the autonomous systems, connected to each other on the Internet [83]. Wikipedia is a network of

English Wikipedia in 2013, where vertices represent pages in English Wikipedia, and there is an

edge between two pages p and q if there is a hyperlink in page p to page q [86]. Wiki-Talk contains

users of Wikipedia as vertices and each edge between two users in this graph indicates if one of the

users has edited the page talk of the other user on Wikipedia [86]. Orkut is a social network where

each vertex represents a user in the network, and there is an edge if there is a friendship relation

between two users [83]. Similar to Orkut, Flickr and LiveJournal are also social networks where a

vertex represents a user and an edge represents the friendship between two users. Ca-Cit-HepTh is

a citation network of high energy physics theory where a vertex represents a paper and there is an

edge between paper u and paper v if u cites v.

For the evaluation of ParTTT and ParMCE, we present the entire graph as input to the algorithm

in the form of an edge list and for the evaluation of the algorithms on dynamic graphs, we start

with the empty graph that contains all vertices but no edges and each time we add a set of edges

in the increasing order of timestamps in a streaming manner for computing the changes in the set

of maximal cliques over time. All the graphs we use for the evaluation of ParIMCE are real dynamic

www.manaraa.com

99

graphs with timestamp of creation is attached to every edge except for LiveJournal which is a static

graph. We convert this graph to a dynamic graph by randomly permuting the edges and use that

ordering for creating the stream of edges.

50 100
Size of Maximal Clique

101

103

105

F
re

qu
en

cy

20 40 60
Size of Maximal Clique

102

104

106

F
re

qu
en

cy

10 20 30
Size of Maximal Clique

101

103

105

107

F
re

qu
en

cy

(a) DBLP-Coauthor (b) As-Skitter (c) Wikipedia

10 20
Size of Maximal Clique

103

105

107

F
re

qu
en

cy

20 40
Size of Maximal Clique

102

104

106

108
F

re
qu

en
cy

(d) Wiki-Talk (e) Orkut

Figure 5.2: Frequency distribution of sizes of maximal cliques across different input graphs.

To understand the datasets better, we illustrated the frequency distribution of sizes of maximal

cliques in Fig. 5.2. The size of maximal cliques in DBLP-Coauthor can be as large as 100 vertices.

Although the number of such large size maximal cliques are small, the depth of the search space

increases exponentially for enumerating the large maximal cliques. As shown in Fig. 5.2, most of

the graphs contains more than tens of millions of maximal cliques. For example, Orkut contains

more than two billion maximal cliques. Thus, the depth and breadth of the search tree makes MCE

a challenging problem to solve.

5.5.2 Implementation of the Algorithms

In the implementations of ParTTT, ParMCE, and ParIMCE, we use parallel for and parallel for each

constructs provided by the Intel TBB parallel library [20] for implementing parallel for loop. We

www.manaraa.com

100

use concurrent hash map provided by TBB for atomic operations on hashtable as needed in our

implementations. We use C++11 standard for the implementation of the algorithms and com-

pile all the sources using Intel ICC compiler version 18.0.3 with optimization level ‘-O3’. We use

the command ‘numactl -i all’ for balancing the memory in a NUMA machine. System level load

balancing is performed using a dynamic work stealing scheduler [20] built inside TBB.

To compare with prior works on MCE, we implement some of them [143, 49, 45, 138, 158] in

C++, and we use the executable of the C++ implementations for the rest (GreedyBB [123] and

Hashing [87]) of the algorithms provided by the respective authors. See Subsection 5.5.4 for more

details.

We compute the degeneracy number and triangle count for each vertex using sequential pro-

cedures. While the computation of per-vertex triangle counts and the degeneracy ordering could

be potentially parallelized, implementing a parallel method to rank vertices based on their degen-

eracy number or triangle count is in itself a non-trivial task. We decided not to parallelize these

routines since the degeneracy- and triangle-based ordering did not yield significant benefits when

compared with degree-based ordering, where as degree-based ordering is trivially available, without

any additional computation.

We assume that the entire graph is stored in available in shared global memory. The runtime of

ParMCE consists of (1) the time required to rank vertices of the graph based on the ranking metric

used in the algorithm, i.e. degree, degeneracy number, or triangle count of vertices and (2) the

time required to enumerate all maximal cliques. For ParMCEDegen and ParMCETri algorithms,

the runtime of ranking is also reported. Figures 5.3 and 5.4 show the parallel speedup (with

respect to the runtime of TTT) and the runtime of ParMCE using different vertex ordering strategies,

respectively. Table 5.4 shows the breakdown of the runtime into time for ordering and the time for

clique enumeration.

The runtime of ParIMCE consists of (1) the computation time of ParIMCENew and (2) the compu-

tation time of ParIMCESub. In the implementation of ParIMCENew, we follow the design of ParMCE

and instead of executing ParTTTExcludeEdges on the entire (sub)graph for an edge as in Line 9 of

www.manaraa.com

101

ParIMCENew, we execute ParTTTExcludeEdges on per-vertex sub-problems in parallel. For dealing

with load balance, we use degree based ordering of the vertices of G in creating the sub-problems.

This choice of implementation of ParIMCENew comes from the improved performance of ParMCE us-

ing degree based vertex ordering over ParTTT in static case. For experiment on dynamic graphs, we

use the batch size of 1000 edges for all the graphs except for an extremely dense graph Ca-Cit-HepTh

(with original graph density 0.01) where we use batch size of 10 edges.

5.5.3 Discussion of the Results

Here we present and interpret the results of the empirical evaluation of the parallel algorithms

that we design in this work. First we show the parallel speedup (with respect to the sequential

algorithms) and scalability (with respect to the number of cores) of our parallel algorithms. Next

we compare our works with the state-of-the-art sequential and parallel algorithms for MCE problem

to show that our algorithms are substantially improved over the prior works.

5.5.3.1 Parallel MCE on Static Graphs

The total runtime of the parallel algorithms with 32 threads are shown in Table 5.3. We observe

that ParTTT achieves a speedup of 5x-14x over the sequential algorithm TTT. The three versions of

ParMCE, ParMCEDegree, ParMCEDegen, ParMCETri achieve a speedup of 15x-21x with 32 threads,

when we consider only the runtime for maximal clique enumeration. The speedups are smaller for

ParMCEDegen and ParMCETri when we add up the time taken by ranking strategies (See Figure 5.3).

The reason for the higher runtimes of ParTTT when compared with ParMCE is the greater cu-

mulative overhead of computing the pivot and in processing the cand and fini sets in ParTTT.

For example, for DBLP-Coauthor graph, in ParTTT, the cumulative overhead of computing pivot is

248 sec. and cumulative overhead of updating the cand and fini is 38 sec. whereas in ParMCE,

these numbers are 156 sec. and 21 sec. respectively and these reduced cumulative times in ParMCE

are reflected in the overall reduction in the parallel enumeration time of ParMCE over ParTTT by a

factor of 2.

www.manaraa.com

102

2 4 8 16 32
Number of Threads

200

400

600

T
im

e(
se

c)

ParMCEDegree ParMCETri ParMCEDegen ParTTT

2 4 8 16 32
Number of Threads

0

5

10

15

20

S
p

ee
d

u
p

2 4 8 16 32
Number of Threads

0

5

10

15

20

S
p

ee
d

u
p

2 4 8 16 32
Number of Threads

0

5

10

15

20

25

S
p

ee
d

u
p

(a) DBLP-Coauthor (b) As-Skitter (c) Wikipedia

2 4 8 16 32
Number of Threads

0

5

10

15

20

S
p

ee
d

u
p

2 4 8 16 32
Number of Threads

0

5

10

15

20

S
p

ee
d

u
p

(d) Wiki-Talk (e) Orkut

Figure 5.3: Parallel speedup when compared with TTT (sequential algo. due to Tomita et al. [143])

as a function of the number of threads.

Impact of vertex ordering on overall performance of ParMCE. Next we consider the influence

of different vertex ordering strategies, degree, degeneracy, and triangle count, on the performance of

ParMCE. The total computation time when using different vertex ordering strategies are presented

in Table 5.4. Overall, we observe that degree based ordering (ParMCEDegree) usually achieves the

smallest (or close to the smallest) runtime for clique enumeration, even when we don’t take into

account the time to compute the ordering. If we add in the time for computing the ordering, de-

gree based ordering is clearly better than triangle count or degeneracy based orderings, since degree

based ordering is available for free, while the degeneracy based ordering and triangle based ordering

require additional computational overhead.

Scaling up with the degree of parallelism. As the number of threads (and the degree of

www.manaraa.com

103

2 4 8 16 32
Number of Threads

200

400

600

T
im

e(
se

c)

ParMCEDegree ParMCETri ParMCEDegen ParTTT

2 4 8 16 32
Number of Threads

10

20

30

T
im

e(
m

s.
)

2 4 8 16 32
Number of Threads

200

400

T
im

e(
m

s.
)

2 4 8 16 32
Number of Threads

500

1000

1500

T
im

e(
m

s.
)

(a) DBLP-Coauthor (b) As-Skitter (c) Wikipedia

2 4 8 16 32
Number of Threads

200

400

600

T
im

e(
m

s.
)

2 4 8 16 32
Number of Threads

5000

10000

15000

20000

T
im

e(
m

s.
)

(d) Wiki-Talk (e) Orkut

Figure 5.4: Runtime as a function of the number of threads.

parallelism) increases, the runtime of ParMCE and of ParTTT decreases, and the speedup as a func-

tion of the number of threads is shown in Figure 5.3 and the runtimes are shown in Figure 5.4. We

see that ParMCEDegree achieves a speedup of more than 15x on all graphs, using 32 threads.

5.5.3.2 Parallel MCE on Dynamic Graphs

The cumulative runtime of IMCE and ParIMCE are presented in Table 5.5 which shows that

the speedup achieved by ParIMCE is 3.6x-19.1x over IMCE. This wide spectrum of speedups is

mainly due to the variations in the size of the changes in the set of maximal cliques (number of

new maximal cliques + number of subsumed maximal cliques) in the course of the incremental

computation which can be observed in Figure 5.5. From this plot, we can see that the speedup

increases with the increase in the size of the changes in the set of maximal cliques. This trend is

as expected because the effect of parallelism will be prominent whenever the number of parallel

tasks will become sufficiently large. This happens when the number of new and subsumed maximal

www.manaraa.com

104

104 105 106

Changes in the Number
of Maximal Cliques

0

5

10

15

S
p

ee
d

u
p

32 threads 16 threads 8 threads 4 threads 2 threads

104 105 106

Changes in the Number
of Maximal Cliques

0

5

10

15

S
p

ee
d

u
p

104 105 106 107

Changes in the Number
of Maximal Cliques

0

5

10

15

S
p

ee
d

u
p

104 105 106

Changes in the Number
of Maximal Cliques

0

5

10

15

S
p

ee
d

u
p

(a) DBLP-Coauthor (b) Flickr (c) LiveJournal

102 104 106

Changes in the Number
of Maximal Cliques

0

10

20

S
p

ee
d

u
p

104 105 106

Changes in the Number
of Maximal Cliques

0

5

10

S
p

ee
d

u
p

(d) Ca-Cit-HepTh (e) Wikipedia

Figure 5.5: Parallel speedup of ParIMCE over IMCE as a function of the size of the change in the

set of maximal cliques. The size of the change is measured by the total number of new maximal

cliques and subsumed maximal cliques when a batch of edges is added to the graph.

www.manaraa.com

105

2 4 8 16 32
Number of Threads

2

4

6

S
p

ee
d

u
p

2 4 8 16 32
Number of Threads

5

10

15

S
p

ee
d

u
p

2 4 8 16 32
Number of Threads

5

10

S
p

ee
d

u
p

(a) DBLP-Coauthor (b) Flickr (c) LiveJournal

2 4 8 16 32
Number of Threads

5

10

15

S
p

ee
d

u
p

2 4 8 16 32
Number of Threads

1

2

3

S
p

ee
d

u
p

(d) Ca-Cit-HepTh (e) Wikipedia

Figure 5.6: Parallel speedup of ParIMCE over IMCE as a function of number of threads, using the

cumulative time of ParIMCE and of IMCE for processing all batches of edges.

www.manaraa.com

106

cliques are large.

Scalability. The degree of parallelism increase with the increase in the number of threads. From

Figure 5.6 we can see that the speedup increases linearly with the number of threads. This behavior

shows the scalability of our parallel algorithm ParIMCE. When the size of the changes will become

large, scalability will become prominent because otherwise, most of the processors will remain idle

when there will not be large amount of parallel tasks to fully utilize all the available processors.

This is observed in Wikipedia (Figure 5.6) where the cumulative size of change is relatively small.

5.5.4 Comparison with prior work

We compare the performance of ParMCE with prior sequential and parallel algorithms for MCE.

We consider the following sequential algorithms: GreedyBB due to Segundo et al. [123], TTT due to

Tomita et al. [143], and BKDegeneracy due to Eppstein et al. [49]. For the comparison with parallel

algorithm, we consider algorithm CliqueEnumerator due to Zhang et al. [158], Peamc due to Du

et al. [45], PECO due to Svendsen et al. [138], and most recent parallel algorithm Hashing due to

Lessley et al. [87]. The parallel algorithms CliqueEnumerator, Peamc, and Hashing are designed

for the shared-memory model, while PECO is designed for distributed memory. We modified PECO

to work with shared-memory, by reusing the method for sub-problem construction, and eliminating

the need to communicate subgraphs by storing a single copy of the graph in shared-memory. We

considered three different ordering strategies for PECO, which we call PECODegree, PECODegen, and

PECOTri. The comparison of performance of ParMCE with PECO is presented in Table 5.6. We

note that ParMCE is significantly better than that of PECO, no matter which ordering strategy was

considered.

The comparison of ParMCE with other shared-memory algorithms Peamc, CliqueEnumerator,

and Hashing is shown in Table 5.7. The performance of ParMCE is seen to be much better than that

of any of these prior shared-memory parallel algorithms. For the graph DBLP-Coauthor, Peamc did

not finish within 5 hours, whereas ParMCE takes at most around 50 secs for enumerating 1.2 million

www.manaraa.com

107

maximal cliques. The poor running time of Peamc is due to two following reasons: (1) the algorithm

does not apply efficient pruning techniques such as pivoting, used in TTT, and (2) the method to

determine the maximality of a clique in the search space is not efficient. The CliqueEnumerator

algorithm runs out of memory after a few minutes. The reason is that CliqueEnumerator maintains

a bit vector for each vertex that is as large as the size of the input graph, and additionally, needs

to store intermediate non-maximal cliques. For each such non-maximal clique, it is required to

maintain a bit vector of length equal to the size of the vertex set of the original graph. Therefore,

in CliqueEnumerator a memory issue is inevitable for a graph with millions of vertices.

A recent parallel algorithm in the literature, Hashing also has a significant memory overhead,

and ran out of memory on the input graphs that we considered. The reason for its high memory

requirement is that Hashing enumerates intermediate non-maximal cliques before finally outputting

maximal cliques. The number of such intermediate non-maximal cliques may be very large, even

for graphs with few number of maximal cliques. For example, a maximal clique of size c contains

2c − 1 non-maximal cliques.

Next, we compare the performance of ParMCE with that of sequential algorithms BKDegeneracy

and a recent sequential algorithm GreedyBB – results are in Table 5.8. For large graphs, the

performance of BKDegeneracy is almost similar to TTT whereas GreedyBB performs much worse than

TTT. Since our ParMCE algorithm outperforms TTT, we can conclude that ParMCE is significantly

faster than other sequential algorithms.

5.5.5 Summary of Experimental Results

We found that both ParTTT and ParMCE yield significant speedups over the sequential algorithm

TTTnearly linear in the number of cores available. ParMCE using the degree-based vertex ranking

always performs better than ParTTT. The runtime of ParMCE using degeneracy/triangle count based

vertex ranking is sometimes worse than ParTTT due to the overhead of sequential computation of

vertex ranking – note that this overhead is not needed in ParTTT. The parallel speedup of ParMCE

is better when the input graph has many large sized maximal cliques. Overall, ParMCE consistently

www.manaraa.com

108

outperforms prior sequential and parallel algorithms for MCE. For a dynamic graph we found

that ParIMCE consistently yields a substantial speedup over the efficient sequential algorithm IMCE.

Further, the speedup of ParIMCE improves as the size of the change (to be enumerated) becomes

larger.

www.manaraa.com

109

Table 5.2: Static and Dynamic Networks, used for evaluation, and their properties. For some of

the graphs used for evaluating the incremental algorithms (Flickr and Ca-Cit-HepTh), we could

not report the information about maximal cliques as they did not finish within 8 hours, even using

parallel algorithms.

Dataset #Vertices #Edges #Maximal Cliques
Average Size of

Maximal Cliques
Size of

Largest Clique

DBLP-Coauthor 1,282,468 5,179,996 1,219,320 3 119

Orkut 3,072,441 117,184,899 2,270,456,447 20 51

As-Skitter 1,696,415 11,095,298 37,322,355 19 67

Wiki-Talk 2,394,385 4,659,565 86,333,306 13 26

Wikipedia 1,870,709 36,532,531 131,652,971 6 31

Flickr 2,302,925 22,838,276 - - -

Ca-Cit-HepTh 22,908 2,444,798 - - -

Table 5.3: Runtime (in sec.) of TTT, ParTTT, and ParMCE with different vertex orderings on 32 cores.

The numbers exclude the time taken for vertex ordering. Note that the best algorithm, which uses

degree based vertex ordering, has zero additional cost for computing the vertex ordering.

Dataset TTT ParTTT ParMCEDegree ParMCEDegen ParMCETri

DBLP-Coauthor 42 4 2 3 3

Orkut 28923 3472 1676 2350 1959

As-Skitter 660 68 39 43 48

Wiki-Talk 961 109 52 78 58

Wikipedia 2646 160 123 155 179

Table 5.4: Total Runtime (in sec.) of ParMCE with different vertex orderings (using 32 threads).

Total Runtime (TT) = Ranking Time (RT) + Enumeration Time (ET).

Dataset ParMCEDegree
ParMCEDegen ParMCETri

RT ET TT RT ET TT

DBLP-Coauthor 3 25 3 28 42 3 45

Orkut 1676 928 2350 3278 2166 1959 4125

As-Skitter 39 41 43 84 122 48 170

Wiki-Talk 52 23 78 101 74 58 132

Wikipedia 123 244 155 399 950 179 1129

www.manaraa.com

110

Table 5.5: Cumulative runtime (in sec.) over the incremental computation across all edges, with

IMCE and ParIMCE using 32 threads. The total number of edges that are processed is also presented.

Dataset #Edges Processed IMCE ParIMCE Parallel Speedup

DBLP-Coauthor 5.1M 6608 933 7x

Flickr 4.1M 35238 2416 14.6x

Wikipedia 36.5M 9402 2614 3.6x

LiveJournal 19.2M 30810 2497 12.3x

Ca-Cit-HepTh 93.8K 33804 1767 19.1x

Table 5.6: Comparison of parallel runtime (excluding the time for computing vertex ranking) (in

sec.) of ParMCE with a version of PECO that is modified to use shared-memory, using 32 threads.

Three different variants are considered for each algorithm based on the vertex ordering strategy.

Dataset PECODegree ParMCEDegree PECODegen ParMCEDegen PECOTri ParMCETri

DBLP-Coauthor 6.4 2.6 6.9 3.1 6.8 2.9

Orkut 2050.7 1676.4 2183.4 2350 2361.9 1959.3

As-Skitter 261.5 39.2 331.8 42.8 260.9 48.2

Wiki-Talk 1729.7 51.6 1728.2 77.8 1720 57.6

Wikipedia 8982.5 123.3 9110.4 155.3 8938 178.8

Table 5.7: Comparison of runtimes (in sec.) of ParMCE with prior works on shared-memory algo-

rithms for MCE (with 32 threads).

Dataset ParMCEDegree Hashing CliqueEnumerator Peamc

DBLP-Coauthor 2.6 Out of memory in 3 min. Out of memory in 10 min. Not complete in 5 hours.

Orkut 1676.4 Out of memory in 7 min. Out of memory in 20 min. Not complete in 5 hours.

As-Skitter 39.2 Out of memory in 5 min. Out of memory in 10 min. Not complete in 5 hours.

Wiki-Talk 51.6 Out of memory in 10 min. Out of memory in 20 min. Not complete in 5 hours.

Wikipedia 123.3 Out of memory in 10 min. Out of memory in 20 min. Not complete in 5 hours.

Table 5.8: Total runtime (sec.) of parallel algorithm ParMCE (with different vertex ranking, with

32 threads) and sequential algorithms BKDegeneracy and GreedyBB.

Dataset BKDegeneracy GreedyBB ParMCEDegree ParMCEDegen ParMCETri

DBLP-Coauthor 53.6 Not finish in 30 min. 2.6 28.1 44.3

Orkut 29812.3 Out of memory in 5 min. 1676.4 3278 4125.3

As-Skitter 641.7 Out of memory in 10 min. 39.2 83.8 170.2

Wiki-Talk 1003.2 Out of memory in 10 min. 51.6 100.8 131.2

Wikipedia 2243.6 Out of memory in 10 min. 123.3 399 1128

www.manaraa.com

111

CHAPTER 6. MAINTENANCE OF MAXIMAL BICLIQUES

6.1 Introduction

In this work we consider the incremental MBE problem, of maintaining the set of maximal

bicliques in a bipartite graph that is evolving continuously over time due to the addition of stream of

new edges. Let G = (L,R,E) be a simple undirected bipartite graph with its vertex set partitioned

into L, R, and edge set E ⊆ L×R. Let BC(G) denote the set of all maximal bicliques in G.

Figure 6.1: Change in maximal bicliques when the graph changes from G1 to G2 due to the addition

of edge set H = {{a, y}, {c, x}}. Each maximal biclique in G1 is subsumed by a larger maximal

biclique in G2, and there is one new maximal biclique in G2.

Suppose that starting from bipartite graph G1 = (L,R,E), the state of the graph changes to

G2 = (L,R,E ∪ H) due to the addition of a set of new edges H. Let Υnew(G1, G2) = BC(G2) \

BC(G1) denote the set of new maximal bicliques that arise in G2 that were not present in G1 and

Υdel(G1, G2) = BC(G1) \ BC(G2) denote the set of maximal bicliques in G1 that are no longer

maximal bicliques in G2 (henceforth called subsumed bicliques). See Fig. 6.1 for an example. Let

Υ(G1, G2) = Υnew(G1, G2)∪Υdel(G1, G2) denote the symmetric difference of BC(G1) and BC(G2).

We consider the following questions:

www.manaraa.com

112

(1) How large can be the size of Υ(G1, G2)? In particular, can a small change in the set of edges

cause a large change in the set of maximal bicliques in the graph?

(2) How can we compute Υ(G1, G2) efficiently? Can we quickly compute Υ(G1, G2) when

|Υ(G1, G2)| is small? In short, can we design change-sensitive algorithms for enumerating elements

of Υ(G1, G2), whose time complexity is proportional to the size of change, |Υ(G1, G2)|?

Roadmap: The remaining sections are organized as follows. We present definitions and pre-

liminaries in Section 6.2. Then we describe our algorithms in Section 6.3, results on the size of

change in the set of maximal bicliques in Section 6.4, and experimental results in Section 6.5.

6.2 Preliminaries

Let V (G) denote the set of vertices of G and E(G) the set of edges in G. Let n and m denote

the number of vertices and number of edges in G respectively. Let ΓG(u) denote the set of vertices

adjacent to vertex u in G. If the graph G is clear from the context, we use Γ(u) to mean ΓG(u).

For an edge e = (u, v) ∈ E(G), let G − e denote the graph after deleting e ∈ E(G) from G and

G+e denote the graph after adding e /∈ E(G) to G. For a set of edges H, let G+H (G−H) denote

the graph obtained after adding (deleting) H to (from) E(G). Similarly, for a vertex v /∈ V (G), let

G+ v denote the graph after adding v to G and for a vertex v ∈ V (G), let G− v denote the graph

after deleting v and all its adjacent edges from E(G). Let ∆(G) denote the maximum degree of a

vertex in G and δ(G) the minimum degree of a vertex in G.

Results for a static graph. In [117], Prisner presented the following result on the num-

ber of maximal bicliques in a bipartite graph with n vertices. Let CP (k) denotes the cocktail-

party graph which is a bipartite graph with k vertices in each partition where V (CP (k)) =

{a1, a2, . . . , ak, b1, b2, . . . , bk} and E(CP (k)) = {(ai, bp) : i 6= p} [117]. See Figure 6.2 for an

example.

Theorem 6 (Theorem 2.1 [117]). Every bipartite graph with n vertices contains at most 2
n
2 ≈ 1.41n

maximal bicliques, and the only extremal (maximal) bipartite graphs are the graphs CP (k).

www.manaraa.com

113

Figure 6.2: Cocktail-party graph on 6 vertices CP (3)

As a subroutine, we use an algorithm for enumerating maximal bicliques from a static undirected

graph, whose runtime is proportional to the number of maximal bicliques. There are a few such

algorithms [6, 92, 159]. We use the following result due to Liu et al. [92] as it provides the current

best time complexity.

Theorem 7 (Liu et al., [92]). For a graph G with n vertices, m edges, maximum degree ∆, and

number of maximal bicliques µ, there is an algorithm MineLMBC for enumerating maximal bicliques

in G with time complexity O(n∆µ) and space complexity O(m+ ∆2).

MineLMBC is an algorithm for enumerating maximal bicliques of a static graph G = (V,E) that is

based on depth-first-search. It takes as input the graph G and the size threshold s. The algorithm

enumerates all maximal bicliques of G with size of each partition at least s. Clearly, by setting

s = 1, the algorithm enumerates all maximal bicliques of G. Please see Section 7.2 for a more

details discussion on MineLMBC.

6.3 Algorithms for Maximal Bicliques

For graph G and set of edges H, we use Υnew to mean Υnew(G,G + H), and Υdel to mean

Υdel(G,G + H). Before presenting our change-sensitive algorithm for maximal bicliques, we first

consider two baseline approaches for the problem.

www.manaraa.com

114

6.3.1 Baseline Algorithms for Maximal Bicliques

First we consider a straightforward approach for maintaining maximal bicliques using a current

state-of-the-art algorithm for static graphs. This algorithm, which we call as BaselineBC, works

by enumerating BC(G + H), the set of all maximal bicliques in (G + H) once G is updated with

a set of new edges H. It then outputs the symmetric difference between BC(G) (maintained in

memory) and BC(G+H).

We next present another baseline BaselineBC∗, which is better than BaselineBC. The idea

in BaselineBC∗ is to focus on the portion of the graph where changes occur. Let VH denote the

set of all vertices in G that are incident to at least one edge in H. For enumerating new maximal

bicliques, we note that it is sufficient to consider the subgraph GH of G+H that is induced by VH

and the vertices in ∪v∈VHΓG+H(v). BaselineBC∗ enumerates all maximal bicliques in GH using

a state-of-the-art algorithm for static graphs. Each biclique b thus generated is a new maximal

biclique if b contains at least an edge from H. For enumerating subsumed bicliques, we note each

subsumed maximal biclique b′ in G is a subgraph of at least one new maximal biclique b, and must

also be contained in b−H. Thus, subsumed maximal bicliques are enumerated by considering each

new maximal b, and enumerating maximal bicliques in b − H. If a biclique thus enumerated is

present in BC(G), it is output as a subsumed biclique.

Figure 6.3: The original graph G has 4 maximal bicliques. When new edges in H (in dotted line)

are added to G, all maximal bicliques in G remain maximal in G+H and only one maximal biclique

is newly formed (< {a3, a4}, {b3, b4} >).

www.manaraa.com

115

We can expect BaselineBC∗ to do much better than BaselineBC. Still BaselineBC∗ it is not

change-sensitive, because it may, in the process of enumerating new maximal bicliques, generate

bicliques of G that remain maximal in G+H. For example, see Fig. 6.3. We next present algorithms

that carefully avoid enumerating any maximal biclique of G that remains maximal in G+H.

6.3.2 Change-Sensitive Algorithm DynamicBC

Our change-sensitive algorithm, DynamicBC, has two parts: (1) Algorithm NewBC for enumer-

ating new maximal bicliques, described in Section 6.3.3 and (2) Algorithm SubBC for enumerating

subsumed bicliques, described in Section 6.3.4.

Algorithm 13: DynamicBC(G,H,BC(G))

Input: G - Input bipartite graph, H - Edges being added to G, BC(G) - set of

maximal bicliques of G

Output: Υ : the union of set of new maximal bicliques and subsumed bicliques

1 Υnew ← NewBC(G,H)

2 Υdel ← SubBC(G,H,BC(G),Υnew)

3 Υ← Υnew ∪Υdel

The main result on the time complexity of DynamicBC is summarized in the following theorem.

Theorem 8. DynamicBC enumerates the change in the set of maximal bicliques, with time com-

plexity O(∆2ρ|Υnew|+ 2ρ|Υnew|) where ∆ is the maximum degree of a vertex in G+H and ρ is the

size of H, the set of newly added edges.

We note that if ρ is constant, the time complexity of enumerating the change is O(∆2|Υnew|).

Thus we have the following observation.

Observation 3. DynamicBC is a change-sensitive algorithm for MBE, when the number of edges

added, ρ is a constant.

www.manaraa.com

116

6.3.3 Enumerating New Maximal Bicliques

In our algorithm, we require that each maximal biclique enumerated by NewBC to contain at

least one edge from H, thus forcing it to be a new maximal biclique. Let G′ denote the graph

G+H. For each new edge e ∈ H, let BC′(e) denote the set of maximal bicliques in G′ containing

edge e.

Lemma 20. Υnew = ∪e∈HBC′(e).

Proof. Each biclique in Υnew must contain at least one edge from H. To see this, consider a biclique

b ∈ Υnew. If b did not contain an edge from H, then b is also a maximal biclique in G, and hence

cannot belong to Υnew. Hence, b ∈ BC′(e) for some edge e ∈ H, and b ∈ ∪e∈HBC′(e). This shows

that Υnew ⊆ ∪e∈HBC′(e).

Next consider a biclique b ∈ ∪e∈HBC′(e). It must be the case that b ∈ BC′(h) for some h in H.

Thus b is a maximal biclique in G+H. Since b contains edge h ∈ H, b cannot be a biclique in G.

Thus b ∈ Υnew. This shows that ∪e∈HBC′(e) ⊆ Υnew.

Figure 6.4: Construction of G′e from G′ = G+H when a set of new edges H = {e, h} is added to

G. A = ΓG′(v) = {u, x} and B = ΓG′(u) = {v, y}.

Next, for each edge e = (u, v) ∈ H, we present an efficient way to enumerate all bicliques

in BC′(e) through enumerating maximal bicliques in a specific subgraph G′e of G′, constructed as

follows. Let A = ΓG′(u) and B = ΓG′(v). Then G′e = (A,B,E′) is a subgraph of G′ induced by

vertices in A and B, and all edges between these sets of vertices. See Fig. 6.4 for an example of the

construction of G′e.

Lemma 21. For each e ∈ H, BC′(e) = BC(G′e)

www.manaraa.com

117

Proof. First we show that BC′(e) ⊆ BC(G′e). Consider a biclique b = (X,Y) in BC′(e). Let

e = (u, v). Here b contains both u and v. Suppose that u ∈ X and v ∈ Y . According to the

construction G′e contains all the vertices adjacent to u and all the vertices adjacent to v. And in b,

all the vertices in X are connected to all the vertices in Y . Hence, b is a biclique in G′e. Also, b is

a maximal biclique in G′, and G′e is an induced subgraph of G′ which contains all the vertices of b.

Hence, b is a maximal biclique in G′e.

Next we show that BC(G′e) ⊆ BC′(e). Consider a biclique b′ = (X ′, Y ′) in BC(G′e). Clearly,

b′ contains e as it contains both u and v and b′ is a maximal biclique in G′e. Hence, b′ is also a

biclique in G′ that contains e. Now we prove that b′ is also maximal in G′. Suppose not, that there

is a vertex w ∈ V (G′) such that b′ can be extended with w. Then, as per the construction of G′e,

w ∈ V (G′e) since w must be adjacent to either u or v. Then, b′ is not maximal in G′e. This is a

contradiction. Hence, b′ is also maximal in G′. Therefore, b′ ∈ BC′(e).

Based on the above observation, we present our change-sensitive algorithm NewBC (Algorithm 14).

We use an output-sensitive algorithm for a static graph MineLMBC for enumerating maximal bicliques

from G′e. Note that typically, G′e is much smaller than G′ since it is localized to edge e, and hence

enumerating all maximal bicliques from G′e should be relatively inexpensive.

Theorem 9. NewBC enumerates the set of all new bicliques arising from the addition of H in time

O(∆2ρ|Υnew|) where ∆ is the maximum degree of a vertex in G′ and ρ is the size of H. The space

complexity is O(|E(G′)|+ ∆2).

Proof. First we consider correctness of the algorithm. From Lemma 20 and Lemma 21, we know

that Υnew is enumerated by enumerating BC(G′e) for every e ∈ H. Our algorithm does this exactly,

and uses the MineLMBC algorithm for enumerating BC(G′e). For the runtime, consider that the

algorithm iterates over each edge e in H. In each iteration, it constructs a graph G′e and runs

MineLMBC(G′e). Note that the number of vertices in G′e is no more than 2∆, since it is the size

of the union of the edge neighborhoods of one of the ρ edges in G′. The set of maximal bicliques

generated in each iteration is a subset of Υnew, therefore the number of maximal bicliques generated

www.manaraa.com

118

Algorithm 14: NewBC(G,H)

Input: G - Input bipartite graph, H - Edges being added to G

Output: bicliques in Υnew, each biclique output once

1 Consider edges of H in an arbitrary order e1, e2, . . . , eρ
2 G′ ← G+H

3 for i = 1 . . . ρ do

4 e← ei = (u, v)

5 G′e ← a subgraph of G′ induced by ΓG′(u) ∪ ΓG′(v)

6 Generate bicliques of G′e using MineLMBC. Let B denote the set of the generated

bicliques.

7 for b ∈ B do

8 if b does not contain an edge ej for j < i then

9 Add b to Υnew

10 return Υnew

from each iteration is no more than |Υnew|. From Theorem 7, we have that the runtime of each

iteration is O(∆2|Υnew|). Since there are ρ edges in H, the result on runtime follows. For the space

complexity, we note that the algorithm does not store the set of new bicliques in memory at any

point. The space required to construct G′e is linear in the size of G′. From Theorem 7, the total

space requirement is O(|E(G′)|+ ∆2).

6.3.4 Enumerating Subsumed Maximal Bicliques

We now consider enumerating BC(G) \ BC(G′) where G′ = G + H. Suppose a new maximal

biclique b of G′ subsumed a maximal biclique b′ of G. Note that b′ is also a maximal biclique in

b−H. One approach is to enumerate all maximal bicliques in b−H and then check which among

them is maximal in G. However, checking maximality of a biclique is a costly operation in itself,

since we need to consider the neighborhood of every vertex in the biclique. Another idea is to store

the bicliques of the graph explicitly and see which among the generated bicliques are contained in

the set of maximal bicliques of G. This is not desirable either, since large amount of memory is

required to store the set of all maximal bicliques of G.

www.manaraa.com

119

We consider a more efficient approach, of storing the signatures of the maximal bicliques instead

of storing the bicliques themselves. We then enumerate all maximal bicliques in b−H and for each

biclique thus generated, we compare the signature of the generated biclique with the signatures of

the bicliques stored. An algorithm following this idea is presented in Algorithm 15. This reduces the

memory requirement. We use a standard hash function (the 64 bit murmur hash 1). For computing

the signature of a biclique, first we represent the biclique in a canonical form (vertices in first

partition represented in lexicographic order followed by vertices in another partition represented in

lexicographic order). Then we convert the string into bytes, and apply the hash function to derive

the signature. By storing hash signatures instead of maximal bicliques, we are able to quickly

check whether a maximal biclique from b−H is contained in the set of maximal bicliques of G by

comparing their hash values. We also pay a lower memory cost, when compared with storing all

bicliques.

With the approach of storing hash signatures of bicliques, there is a small probability of a hash

collision, i.e. the case when two bicliques A and B are unequal, but their hash values are equal.

The effect of a collision is a false positive – our algorithm may incorrectly conclude that a biclique is

a subsumed biclique where as it is not. However, this is a very unlikely event with the use of 64 bit

signatures, where the chances of two unequal strings having the same hash value is extremely small.

In our experiments, the set of bicliques that were enumerated by our algorithm always matches the

set of subsumed bicliques. Note that we can always double check each such biclique by explicitly

checking if this is maximal in G, to avoid a chance of a false positive. We did not do this in our

implementation since the chance of a false positive is so small.

Now we prove that Algorithm 15 enumerates all maximal bicliques of b−H.

Lemma 22. In Algorithm 15, for each b ∈ Υnew, S after Line 14 contains all maximal bicliques

in b−H.

Proof. First observe that, removing H from b is equivalent to removing those edges in H which

are present in b. Hence, computing maximal bicliques in b − H reduces to computing maximal

1https://sites.google.com/site/murmurhash/

www.manaraa.com

120

bicliques in b−H1 where H1 is the set of all edges in H which are present in b. We use induction

on the number of edges k in H1. Consider the base case, when k = 1. H1 contains a single edge

e1 = {u, v}. Clearly, b −H1 has two maximal bicliques b \ {u} and b \ {v}. Suppose, that the set

H1 is of size k. Our inductive hypothesis is that all maximal bicliques in b −H1 are enumerated.

Consider H ′1 = {e1, e2, ..., ek, ek+1} with k+ 1 edges. Now each maximal biclique b′ in b−H1 either

remains maximal within b − H ′1 (if at least one endpoint of ek+1 is not in b′) or generates two

maximal bicliques in b−H ′1 (if both endpoints of ek+1 are in b′). Thus, for each b ∈ Υnew, S after

Line 14 contains all maximal bicliques within b−H.

We now show that the above algorithm is a change-sensitive algorithm for enumerating all

elements of Υdel when the number of edges ρ in H is constant.

Theorem 10. Algorithm 15 enumerates all bicliques in Υdel = BC(G) − BC(G + H) using time

O(2ρ|Υnew|) where ρ is the number of edges in H. The space complexity of the algorithm is

O(|E(G′)|+ |V (G′)|+ ∆2 + |BC(G)|).

Proof. We first show that every biclique b′ enumerated by the algorithm is indeed a biclique in

Υdel. Note that b′ is a maximal biclique in G, due to explicitly checking the condition. Further, b′

is not a maximal biclique in G+H, since it is a proper subgraph of b, a maximal biclique in G+H.

Next, we show that all bicliques in Υdel are enumerated. Consider any subsumed biclique b′ ∈ Υdel.

It must be contained within b \H, where b is a maximal biclique within Υnew. Moreover, b′ will be

a maximal biclique within b \H, and will be enumerated by the algorithm according to Lemma 22.

For the time complexity we show that for any b ∈ Υnew, the maximum number of maximal

bicliques in b−H is 2ρ using induction on ρ. Suppose ρ = 1 so that H contains a single edge, say

e1 = (u, v). Then, b − H has two maximal bicliques, b \ {u} and b \ {v}, proving the base case.

Suppose that for any set H of size k, it was true that b−H has no more than 2k maximal bicliques.

Consider a set H ′′ = {e1, e2, . . . , ek+1} with k+1 edges. Let H ′ = {e1, e2, . . . , ek}. Subgraph b−H ′′

is obtained from b−H ′ by deleting a single edge ek+1. By induction, we have that b−H ′ has no

more than 2k maximal bicliques. Each maximal biclique b′ in b − H ′ either remains a maximal

www.manaraa.com

121

Algorithm 15: SubBC(G,H,BC,Υnew)

Input: G - Input bipartite graph

H - Edge set being added to G

BC - Set of maximal bicliques in G

Υnew - set of new maximal bicliques in G+H

Output: All bicliques in Υdel = BC(G) \ BC(G+H)

1 Υdel ← ∅
2 for b ∈ Υnew do

3 S ← {b}
4 for e = (u, v) ∈ E(b) ∩H do

5 S′ ← φ

6 for b′ ∈ S do

7 if e ∈ E(b′) then

8 b1 = b′ \ {u} ; b2 = b′ \ {v}
9 S′ ← S′ ∪ {b1, b2}

10 else

11 S′ ← S′ ∪ b′

12 /* S′ contains all the maximal bicliques in b− {e1, e2, ..., ek} where

{e1, e2, ..., ek} ⊆ E(b) ∩H are considered so far. */

13

14 S ← S′

15 for b′ ∈ S do

16 if b′ ∈ BC then

17 Add b′ to Υdel

18 BC ← BC \ b′

19 return Υdel

www.manaraa.com

122

biclique within b − H ′′ (if at least one endpoint of ek+1 is not in b′), or leads to two maximal

bicliques in b − H ′′(if endpoints of ek+1 are in different bipartition of b′). Hence, the number of

maximal bicliques in b −H ′′ is no more than 2k+1, completing the inductive step. Following this,

for each biclique b ∈ Υnew, we need to check for maximality for no more than 2ρ bicliques in G.

This checking can be performed by checking whether each such generated biclique in contained in

the set BC(G) and for each biclique, this can be done in constant time.

For the space bound, we first note that in Algorithm 15, enumerating maximal bicliques within

b −H consumes space O(|E(G′)| + ∆2), and checking for maximality can be done in space linear

in size of G. However, for storing the maximal bicliques in G takes O(|BC(G)|) space. Hence, for

these operations, the overall space-cost for each b ∈ Υnew is O(|E(G′)|+ |V (G′)|+ ∆2 + |BC(G)|).

The only remaining space cost is the size of Υnew, which can be large. Note that, the algorithm

only iterates through Υnew in a single pass. If elements of Υnew are provided as a stream from the

output of an algorithm such as NewBC, then they do not need to be stored within a container, so

that the memory cost of receiving Υnew is reduced to the cost of storing a single maximal biclique

within Υnew at a time.

Algorithm 16: Decremental(G,H)

Input: G - Input bipartite graph, H - Edges being deleted from G

Output: Υnew(G,G−H) ∪Υdel(G,G−H)

1 Υnew ← φ; Υdel ← φ; G′′ ← G−H
2 Υdel ← NewBC(G′′, H)

3 Υnew ← SubBC(G′′, H,BC(G′′),Υdel)

4 returnΥnew ∪Υdel

6.3.5 Decremental and Fully Dynamic Cases

We now consider the maintenance of maximal bicliques in the decremental case, when edges

are deleted from the graph. This case can be handled using a reduction to the incremental case.

We show in Lemma 23 that the maintenance of maximal bicliques due to deletion of a set of edges

www.manaraa.com

123

H from a bipartite graph G is equivalent to the maintenance of maximal bicliques due to addition

of H to the bipartite graph G−H. An algorithm for the decremental case based on Lemma 23 is

presented in Algorithm 16.

Lemma 23. Υnew(G,G−H) = Υdel(G−H,G) and Υdel(G,G−H) = Υnew(G−H,G)

Proof. Note that Υnew(G,G − H) is the set of all bicliques that are maximal in G − H, but

not in G. By definition, this is equal to Υdel(G − H,G). Similarly we have Υdel(G,G − H) =

Υnew(G−H,G).

The fully dynamic case, where there is a set of edges added as well as a set of edges deleted, can

be handled as follows. Suppose that edge set H was added and set H ′ was deleted. We first ensure

that common H ∩ H ′ = ∅. If the intersection is non-empty, then all common edges are removed

from H and H ′, since they will not have an impact on the graph. We then use the incremental

algorithm to handle the addition of H, followed by the decremental algorithm to handle deletion

of H ′. Using the outputs of these two algorithms, it is possible to enumerate the total change. We

note that this algorithm is not provably change-sensitive, since the intermediate results that are

output after the addition of H are not necessarily part of the final output.

6.4 Magnitude of change in Bicliques

We consider the maximum change in the set of maximal bicliques when a set of edges is added

to the bipartite graph. Let λ(n) denote the maximum size of Υ(G,G+H) taken over all n vertex

bipartite graphs G and edge sets H. We derive the following upper bound on the maximum size of

Υ(G,G+H) in the following Lemma:

Lemma 24. λ(n) ≤ 2g(n).

Proof. Note that, for any bipartite graph G with n vertices and for any new edge set H it must be

true that |BC(G)| ≤ g(n) and |BC(G + H)| ≤ g(n). Since |Υnew(G,G + H)| ≤ |BC(G + H)| and

|Υdel(G,G+H)| ≤ |BC(G)|, it follows that |Υ(G,G+H)| ≤ |BC(G+H)|+ |BC(G)| ≤ 2g(n).

www.manaraa.com

124

Next we analyze the upper bound of |Υ(G,G + e)| in the following when an edge e /∈ E(G) is

added to G.

Theorem 11. For an integer n ≥ 2, a bipartite graph G = (L,R,E) with n vertices, and any edge

e = (u, v) /∈ E(G), u ∈ L, v ∈ R, the maximum size of Υ(G,G+ e) is 3g(n− 2), and for each even

n, there exists a bipartite graph that achieves this bound.

We prove this theorem in the following two lemmas. In Lemma 25 we prove that the size of

Υ(G,G + e) can be as large as 3g(n − 2) and in Lemma 27 we prove that the size of Υ(G,G + e)

is at most 3g(n− 2).

Lemma 25. For any even integer n > 2 there exists a bipartite graph G on n vertices and an edge

e = (u, v) /∈ E(G) such that |Υ(G,G+ e)| = 3g(n− 2).

Proof. We use proof by construction. Consider bipartite graph G = (L,R,E) constructed on vertex

set L ∪ R with n vertices such that |L| = |R| = n/2. Let u ∈ L and v ∈ R be two vertices and let

L′ = L \ {u} and R′ = R \ {v}. Let G′′ denote the induced subgraph of G on vertex sets L′ and

R′. In our construction, G′′ is CP (n2 − 1). In graph G, in addition to the edges in G′′, we add an

edge from each vertex in R′ to u and an edge from each vertex in L′ to v. We add edge e = (u, v)

to G to get graph G′ = G+ e (see Fig. 6.5 for construction). We claim that the size of Υ(G,G′) is

3g(n− 2).

First, we note that the total number of maximal bicliques in G is 2g(n − 2). Each maximal

biclique in G contains either vertex u or v, but not both. The number of maximal bicliques that

contain vertex u is g(n − 2), since each maximal biclique in G′′ leads to a maximal biclique in G

by adding u. Similarly, the number of maximal bicliques in G that contains v is g(n− 2), leading

to a total of 2g(n− 2) maximal bicliques in G.

Next, we note that the total number of maximal bicliques in G′ is g(n−2). To see this, note that

each maximal biclique in G′ contains both vertices u and v. Further, for each maximal biclique in

G′′, we get a corresponding maximal biclique in G′ by adding vertices u and v. Hence the number

of maximal bicliques in G′ equals the number of maximal bicliques in G′′, which is g(n− 2).

www.manaraa.com

125

Figure 6.5: Construction showing the changes in the set of maximal bicliques when a new edge is

added. G is in the left on n = 6 vertices. G′′ consists of vertices in L′ and R′ and edges among

them to make it a cocktail-party graph. G′ in the right is obtained by adding edge e = (u, v) to G.

No maximal biclique in BC(G) contains both u and v, while every maximal biclique in G′

contains both u and v. Hence, BC(G) and BC(G′) are disjoint sets, and |Υ(G,G′)| = |BC(G)| +

|BC(G′)| = 3g(n− 2).

Now we will prove a few results that we will use in proving Lemma 27.

Lemma 26. If e = (u, v) is added to G, each biclique b ∈ BC(G)−BC(G+ e) contains either u or

v.

Proof. Proof by contradiction. Suppose there is maximal biclique b = (b1, b2) in BC(G)−BC(G+e)

that contain neither u nor v. Then, b must be maximal biclique in G. Since b is not a maximal

biclique in G + e, b is contained in another maximal biclique b′ = (b′1, b
′
2) in G + e. Note that b′

must contain edge e = (u, v), and hence, both vertices u and v. Since b′ is a biclique, every vertex

in b′2 is connected to u in G′. Hence, every vertex in b2 is connected to u even in G. Therefore,

b ∪ {u} is a biclique in G, and b is not maximal in G, contradicting our assumption.

Observation 4. For a bipartite graph G = (L,R,E) and a vertex u ∈ V (G), the number of

maximal bicliques that contains u is at most g(n− 1).

Proof. Suppose, u ∈ L. Then each maximal biclique b in G that contains u, corresponds to a unique

maximal biclique in G− {u}. Such maximal bicliques can be derived from b by deleting u from b.

www.manaraa.com

126

As the maximum number of maximal bicliques in G − {u} is g(n − 1), the maximum number of

maximal bicliques in G can be no more than g(n− 1).

Observation 5. The number of maximal bicliques containing a specific edge (u, v) is at most

g(n− 2).

Proof. Consider an edge (u, v) ∈ E(G). Let vertex set V ′ = (ΓG(u) ∪ ΓG(v)) − {u, v}, and let

G′ be the subgraph of G induced by V ′. Each maximal biclique b in G that contains edge (u, v)

corresponds to a unique maximal biclique in G′ by simply deleting vertices u and v from b. Also,

each maximal biclique b′ in G′ corresponds to a unique maximal biclique in G that contains (u, v)

by adding vertices u and v to b′. Thus, there is a bijection between the maximal bicliques in G′

and the set of maximal bicliques in G that contains edge (u, v). The number of maximal bicliques

in G′ can be at most g(n− 2) since G′ has no more than (n− 2) vertices, completing the proof.

Lemma 27. For a bipartite graph G = (L,R,E) on n vertices and edge e = (u, v) /∈ E(G), the

size of Υ(G,G+ e) can be no larger than 3g(n− 2).

Proof. Proof by contradiction. Suppose there exists a bipartite graph G = (L,R,E) and edge

e /∈ E(G) such that |Υ(G,G + e)| > 3g(n − 2). Then either |BC(G + e) − BC(G)| > g(n − 2) or

|BC(G)− BC(G+ e)| > 2g(n− 2).

Case 1: |BC(G + e) − BC(G)| > g(n − 2): This means that total number of new maximal

bicliques formed due to addition of edge e is larger than g(n − 2). Note that each new maximal

biclique formed due to addition of e must contain e. From Observation 5, the total number of

maximal bicliques in an n vertex bipartite graph containing a specific edge can be at most g(n−2).

Thus, the number of new maximal bicliques after adding edge e is at most g(n− 2), contradicting

our assumption.

Case 2: |BC(G) − BC(G + e)| > 2g(n − 2): Using Lemma 26, each maximal biclique b ∈

BC(G) − BC(G + e) must contain either u or v, but not both. Suppose that b contains u but not

v. Then, b must be a maximal biclique in G− v. Using Observation 4, we see that the number of

maximal bicliques in G− v that contains a specific vertex u is no more than g(n− 2). In a similar

www.manaraa.com

127

way, the number of possible maximal bicliques that contain v is at most g(n − 2). Therefore, the

total number of maximal bicliques in BC(G) − BC(G + e) is at most 2g(n − 2), contradicting our

assumption.

Combining Lemma 24, Theorem 11 and using the fact that 3g(n− 2) = 1.5g(n) for even n, we

obtain the following when n is even:

Theorem 12. 1.5g(n) ≤ λ(n) ≤ 2g(n)

6.5 Experimental Evaluation

In this section, we present results of an experimental evaluation of our algorithms.

6.5.1 Datasets

Table 6.1: Summary of the input graphs.

Dataset Nodes Edges (start) Edges (stop) Edges (original graph)

epinions-rating-init 876, 252 0 1, 210, 000 13, 668, 320
lastfm-song-init 1, 085, 612 0 361, 500 4, 413, 834
movielens-10M-init 80, 555 0 8, 500 10, 000, 054
wiktionary-init 2, 123, 868 0 235, 000 5, 573, 038

We consider the following real-world bipartite graphs in our experiments. A summary of the

datasets is presented in Table 6.1. We collect all the datasets from KONECT - The Koblenz

Network Collection 2. In the epinions-rating [1] graph, vertices consist of users in one partition

and products in another partition. There is an edge between a user and a product if the user rated

that product. In the lastfm-song [2] graph, vertices consist of users in one partition and the songs

in another partition. When a user listens to a song an edge connect the user with that song. In the

movielens-10M [3] graph, vertices consist of users in one partition and movies in another partition.

There is an edge between a user and a movie if the user rated that movie. In the wiktionary [4]

graph, vertices consist of users and pages from English Wiktionary. There is an edge between a user

2http://konect.uni-koblenz.de/

http://konect.uni-koblenz.de/

www.manaraa.com

128

and a page if that user edited the page. Each bipartite graph has timestamps on their edges. We

converted each bipartite graph into a simple undirected bipartite graph by ignoring edge directions,

and considered the earliest creation time of an edge as the timestamp, if there are multiple edges

in the original graph.

We create the initial graphs (epinions-rating-init, lastfm-song-init, movielens-10M-init,

and wiktionary-init) by removing all the edges from the original graphs and present the edge

stream in the increasing order of their time-stamps. In Table 6.1, column Edges (start) represents

the number of edges in the initial graph and column Edges (stop) represents the total number of

edges inserted until we stop the experiment. For each input graph we run each algorithm upto 2

hours.

6.5.2 Experimental Setup and Implementation Details

We implemented all algorithms in Java on a 64-bit Intel(R) Xeon(R) CPU clocked at 3.10 Ghz

and 8G DDR3 RAM with 6G heap memory space. Unless otherwise specified, each batch consists

of 100 edges and size threshold s = 1, where the size threshold refers to the minimum size of each

partition of a maximal biclique. We report the median of 3 runs for each input graph.

Metrics: We evaluate our algorithms using the following metrics: (1) computation time for new

maximal bicliques and subsumed bicliques when a set of edges are added, (2) memory consumption,

that is the main memory used by the algorithm for storing the graph, and other data structures used

by the algorithm, (3) cumulative time, that is the total computation time from the initial graph

till we stop the experiment with different batch sizes, and (4) change-sensitiveness, the relation of

the total computation time to the size of change. We measure the size of change as the sum of the

total number of edges in the new maximal bicliques and the subsumed bicliques (change-in-edges)

as well as the sum of the total number of nodes (change-in-nodes) and

www.manaraa.com

129

Table 6.2: For each algorithm, the number shows the cumulative computation time for the number (in the
parenthesis) of batch additions incrementally.

Initial-graph DynamicBC BaselineBC BaselineBC∗

epinions-rating-init (424) 2 sec. 7, 200 sec. 17 sec.
lastfm-song-init (625) 93 sec. 7, 920 sec. 1, 740 sec.
movielens-10M-init (58) 7 min. out of memory after 23 min. 10.8 min.
wiktionary-init (494) 8 min. out of memory after 96 min. 149.15 min.

6.5.3 Discussion of Results

Comparison with Baseline Algorithms: We compare the performance of DynamicBC with

baseline algorithms BaselineBC and BaselineBC∗. We use MineLMBC [92] for enumerating bicliques

from a static graph. Table 6.2 shows a comparison of the runtimes of DynamicBC with BaselineBC

and BaselineBC∗. From the table, it is clear that DynamicBC is orders of magnitude faster than

BaselineBC and many times faster than BaselineBC∗. For instance, for adding 625 batches of

edges starting from lastfm-song-init, DynamicBC takes about 93 sec., BaselineBC about 7, 920

sec., and BaselineBC∗ about 1, 740 sec.

Computation Time per Batch of Edges: Fig. 6.6 shows the computation time (per batch)

versus iteration number where one batch is added in each iteration. From the plots, we observe

an increasing trend in computation time with the iteration number. There are two reasons for

this. One is that with more iterations, the graph becomes denser, and the average degree increases.

This contributes to the runtime of computing new maximal bicliques, as is predicted by theory

(Theorem 8). Another reason is that the size of change in the maximal bicliques typically increases

as more edges are added to the graph, as can be seen from the figure. Whenever the size of change

in maximal bicliques drops, the computation time also drops. Fig. 6.7 shows the breakdown of

computation time of DynamicBC into time taken for enumerating new bicliques (NewBC) and time

taken for enumerating subsumed bicliques (SubBC). Observe that the average computation time

(where the average is taken over a range of iterations) increases for both new maximal bicliques

and subsumed bicliques as more batches are added, for the same reasons as above.

www.manaraa.com

130

103

104

105

106

107

4000 8000 12000
10−3

10−2

10−1

100

101

si
ze

of
ch

an
ge

ru
nt

im
e(

se
c.

)

Iteration number

change-in-edges
change-in-nodes

time
103

104

105

106

107

108

1200 2400 3600
10−2

10−1

100

101

102

si
ze

of
ch

an
ge

ru
nt

im
e(

se
c.

)

Iteration number

change-in-edges
change-in-nodes

time

(a) epinions-rating-init (b) lastfm-song-init

102

103

104

105

106

107

108

109

20 40 60 80
10−3

10−2

10−1

100

101

102

103

104

si
ze

of
ch

an
ge

ru
nt

im
e(

se
c.

)

Iteration number

change-in-edges
change-in-nodes

time
103

104

105

106

107

500 1500 2300
10−2

10−1

100

101

102

si
ze

of
ch

an
ge

ru
nt

im
e(

se
c.

)
Iteration number

change-in-edges
change-in-nodes

time

(c) movielens-10M-init (d) wiktionary-init

Figure 6.6: Computation time (in sec.) for total change vs. size of total change. The left y-axis

shows the change and the right y-axis shows the computation time.

www.manaraa.com

131

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

1-3
K

3K
-6K

6K
-9K

9K
-12

K

A
vg

.
co

m
p.

ti
m

e
in

ra
ng

e

Iteration range

NewBC
SubBC

0
1
2
3
4
5
6

1-9
00

900
-1.8

K

1.8
K-2.7

K

2.7
K-3.6

K

A
vg

.
co

m
p.

ti
m

e
in

ra
ng

e

Iteration range

NewBC
SubBC

(a) epinions-rating-init (b) lastfm-song-init

0
50

100
150
200
250
300

1-2
0

20-
40

40-
60

60-
85A

vg
.

co
m

p.
ti

m
e

in
ra

ng
e

Iteration range

NewBC
SubBC

0
1
2
3
4
5
6
7
8

1-6
00

600
-12

00

120
0-1

800

180
0-2

350

A
vg

.
C

om
p.

ti
m

e
in

ra
ng

e

Iteration range

NewBC
SubBC

(c) movielens-10M-init (d) wiktionary-init

Figure 6.7: Computation time (in sec.) broken down into time for new and subsumed bicliques.

www.manaraa.com

132

Change-Sensitiveness: Fig. 6.6 shows the computation time and the size of change, as mea-

sured in terms of the number of nodes as well as number of edges. We observe that the computation

time increases as the size of change increases and decreases as the size of change decreases. But

the relationship is not exactly linear. This is because the computation time depends also on the

degree of vertices of the graph, which increases as more edges are inserted.

Memory Consumption: Fig. 6.8 shows the memory consumption of DynamicBC. Since SubBC

needs to maintain the maximal bicliques in memory for computing subsumed bicliques, we report

the memory consumption in two cases: (1) when the maximal bicliques are stored in memory,

(2) when hash signatures of maximal bicliques are stored in memory. Storing signatures consumes

less memory than storing actual bicliques (by storing the node sets) as the signatures have fixed

size (64 bits) no matter the size of the bicliques. This difference in memory is also clear in the

plots. The difference in memory consumption is not prominent during the initial iterations because

the sizes of maximal bicliques are much smaller during initial iterations.

Effect of Batch Size on Cumulative Computation Time: Table 6.3 shows the cumulative

computation time for different graphs when we use different batch sizes. We observe that overall

the total computation time increases when the batch size increases. The reason is the computation

time for subsumed bicliques, which increases with increasing batch size, while the computation

time for the new maximal bicliques remains almost the same across different batch sizes except

movielens-10M-init. In case of movielens-10M-init, we observed that the time for computing

new maximal bicliques also increased with the batch size. The reason is that the algorithm for new

maximal bicliques can enumerate the same (new) maximal biclique multiple times, for considering

new edges. Such duplicates are suppressed before emitting, but contribute to additional runtime.

For this graph, the number of duplicates increased considerably for a batch size of say, 100.

The time complexity for SubBC has (in the worst case) an exponential dependence on the batch

size. Therefore, the computation time for subsumed bicliques tends to increase with an increase in

the batch size. However, with a very small batch size (such as 1 or 10), the cost of enumerating

subsumed bicliques was mostly dominated by the cost of enumerating new maximal bicliques.

www.manaraa.com

133

0
50

100
150
200
250
300
350
400

4000 8000 12000m
em

or
y

co
ns

um
pt

io
n

(M
B

)

Iteration number

with hash
without hash

0
50

100
150
200
250
300
350

1200 2400 3600m
em

or
y

co
ns

um
pt

io
n

(M
B

)

Iteration number

with hash
without hash

(a) epinions-rating-init (b) lastfm-song-init

0
100
200
300
400
500
600
700

0 10 20 30 40 50 60 70 80 90m
em

or
y

co
ns

um
pt

io
n

(M
B

)

Iteration number

with hash
without hash

20
40
60
80

100
120
140
160
180
200
220

500 1500 2300m
em

or
y

co
ns

um
pt

io
n

(M
B

)

Iteration number

with hash
without hash

(c) movielens-10M-init (d) wiktionary-init

Figure 6.8: Memory consumption (in MB) with and without using hash function.

Table 6.3: Total computation time in hours for different batch sizes. The total time is split into two numbers.
The first number is the time for new maximal bicliques and the second number is the time for subsumed
maximal bicliques.

Initial-graph batch-size-1 batch-size-10 batch-size-100

epinions-rating-init 1 (0.9 + 0.1) 1 (0.8 + 0.2) 2 (0.8 + 1.2)
lastfm-song-init 1.5 (1.45 + 0.09) 1.8 (1.5 + 0.3) 1.9 (1.5 + 0.4)
movielens-10M-init 0.4 (0.36+0.04) 0.6 (0.5 + 0.1) 2.1 (1.6 + 0.5)
wiktionary-init 1.8 (1.7 + 0.1) 1.8 (1.7 + 0.1) 2 (1.7 + 0.3)

www.manaraa.com

134

Table 6.4: Total computation time in hour by varying the threshold size s.

Initial-graph s = 2 s = 4 s = 6 s = 8 s = 10 s = 12

epinions-rating-init 1.2 0.9 0.7 0.4 0.3 0.3
lastfm-song-init 1.6 1.3 0.7 0.4 0.3 0.3
movielens-10M-init 2.1 1.9 1.6 0.9 0.3 0.1
wiktionary-init 1.5 1 0.7 0.5 0.4 0.4

Effect of Size Threshold on Computation Time: We also consider maintaining maximal

bicliques with specified size threshold s, where it is required that each bipartition has size at least

s. Table 6.4 shows the cumulative computation time by varying the threshold s. As expected,

the cumulative computation time decreases as the size threshold s increases, since there is more

pruning possible during the depth-first-search performed by Algorithm MineLMBC.

www.manaraa.com

135

CHAPTER 7. PARALLEL MAXIMAL BICLIQUE ENUMERATION ON

STATIC BIPARTITE GRAPH

7.1 Introduction

The runtime of sequential algorithms for MBE can be high on large and complex graphs. For

example, MineLMBC takes approximately 11 hours to enumerate 5.2 million maximal bicliques from

a bipartite IMDB network with 1.2 million vertices and 3.8 million edges in an 8 core Intel E5 2650

processor. The runtimes will naturally be even higher for larger and denser graphs, and this can

be a bottleneck for analysis of bicliques in large bipartite graphs. The natural way to improve the

turnaround time is to use parallel computing.

In this work we develop shared-memory parallel algorithms for MBE, which can use the power of

a multicore machine to speedup enumeration of maximal bicliques from a graph. Shared memory

machines are now commonplace, and machines with tens to hundreds of cores and hundreds of

gigabytes are readily available. The shared-memory parallel platform offers certain advantages

over a distributed memory platform for problems on graph analysis. On a shared-memory machine,

the graph does not have to be partitioned across processors, like in a distributed memory system.

Graph partitioning, which is itself a complex task, can thus be avoided. Further, there is no need to

communicate using messages between nodes. Communication among tasks can be achieved using

reading and writing from shared memory, which is much cheaper than message passing.

Roadmap: The rest of the sections are organized as follows. We present preliminaries in Sec-

tion 7.2, followed by parallel algorithms Section 7.3, and experimental evaluation in Section 7.4.

7.2 Preliminaries

We consider simple undirected bipartite graph G = (L,R,E) where L and R are two partitions

and E ⊆ L×R. The set of vertices adjacent to a vertex v is denoted by Γ(v) and the set of vertices

www.manaraa.com

136

common to all the vertices in the set X is denoted by Γ(X). Mathematically, Γ(v) = {u|(u, v) ∈ E}

and Γ(X) = {u|∀x ∈ X, (u, x) ∈ E}. We denote by Γ2(v) all the vertices reachable in 2 hop from

v and by deg(v) the number of vertices adjacent to v. Let d denote the maximum degree of the

graph G, M denote the number of maximal biclique in G, and Mv denote the number of maximal

bicliques in G containing a particular vertex v.

Sequential Algorithm MineLMBC: The algorithm MineLMBC enumerates all maximal bicliques of a

simple undirected graph G by exploring the graph in a depth-first manner. Each node in the search

tree generates a maximal biclique and spawns child nodes by adding the vertices to the current set

X (which a bipartition of the current maximal biclique) one at a time from the set tail(X) which

is a set of candidate vertices for generating maximal bicliques from X often called tail vertices of

X. For generating all maximal bicliques when G is a bipartite graph, tail(X) is initialized with

the smaller bipartition, Γ(X) with the larger bipartition, X with an empty set, and minimum size

ms = 1. MineLMBC is formally described in Algorithm 17.

Algorithm 17: MineLMBC(X,Γ(X), tail(X),ms)

Input: X - vertex set, Γ(X) - adjacency list of X

tail(X) - tail vertices of X

ms - minimum size threshold.

Output: B - Set of all maximal bicliques containing X.

1 for v ∈ tail(X) do

2 if (|Γ(X ∪ {v})| < ms) then

3 tail(X)← tail(X) \ {v}

4 if |X|+ |tail(X)| < ms then

5 return

6 sort vertices of tail(X) into ascending order of |Γ(X ∪ {v})|
7 for v ∈ tail(X) do

8 tail(X)← tail(X) \ {v}
9 if |X ∪ {v}|+ |tail(X)| > ms then

10 Y ← Γ(Γ(X ∪ {v}))
11 if Y \ (X ∪ {v}) ⊆ tail(X) then

12 if |Y | ≥ ms then

13 B ← B∪ < Y,Γ(X ∪ {v}) >
14 MineLMBC(Y,Γ(X ∪ {v}), tail(X) \ Y,ms)

www.manaraa.com

137

The time complexity of generating all maximal bicliques in a bipartite graph G using MineLMBC

is O(ndM) where n is the size of the smaller bipartition of G and other notations carry their usual

meaning.

In the analysis of our parallel algorithms, we will use parallel cost model as described in Sec-

tion 5.2.

7.3 Parallel MBE Algorithms

In this section, we design two shared memory parallel algorithms for MBE. The first algorithm

ParLMBC is inspired by the state-of-the-art output sensitive algorithm MineLMBC and the second

algorithm ParMBE is inspired by the state-of-the-art distributed algorithm CDFS and our parallel

algorithm ParLMBC. Although ParLMBC is a theoretically work-efficient parallel algorithm, algorithm

ParMBE is practically much faster than ParLMBC because it subdivide the problem into multiple tasks

per vertex and reduces the overall time by significantly reducing the size of the tail set per task

basis as opposed to the larger tail set in the parallel recursive calls in ParLMBC. We will discuss

about ParMBE followed by the discussion on ParLMBC which is the subroutine for enumerating

maximal bicliques in tasks per vertex in the algorithm ParMBE.

7.3.1 Algorithm ParLMBC

ParLMBC is an work-efficient parallelization of the sequential algorithm MineLMBC (Algorithm 17)

that consists of three main components: (1) pruning of the tail set (Lines 1-3), (2) sorting the

vertices in the tail set (Line 6), and (3) recursive exploration of the search space in depth-first order

(Lines 7-14) where each iteration corresponds to the exploration of a sub search space. Now we

explain how we parallelize each of these components:

Parallel pruning of the tail set: Within a single call to MineLMBC, pruning on the tail vertex

set is performed in parallel in a straight forward manner: iterate over the vertices in the tail set in

parallel and remove those that fails to satisfy the threshold size criteria as in Line 2 of Algorithm 17.

www.manaraa.com

138

The total work of this step is O(nd) following the analysis in the sequential algorithm description

and the depth is O(1) following the depth of intersection of two sets as discussed in Chapter 5

(Lemma 16).

Parallel sorting the vertices in the tail set: Sorting the vertices in a set using a parallel sort-

ing algorithm is difficult to achieve because parallel sorting algorithm works on list data structure

such as array or vector where the elements are indexed in the data structure which is not the case

when the elements are in an unordered set such as the vertices in the tail set in our situation.

We overcome this difficulty by putting the elements of tail set in an array (assume the array is

A) in parallel with identity mapping meaning that A[v] = v only if v is in tail set and A[v] = 0

otherwise. Next we apply parallel filter operation on the array to compact it (an array containing

only the elements in the pruned tail set) and assume that the resulting array is A′. Next we apply

parallel sorting algorithm to sort the elements in A′ with comparison on Γ(·) instead of the absolute

values of the vertices in the tail set. Finally we generate the sorted array consisting of the vertices

in pruned tail set. The total work of this step is O(n log n) which is a combination of array A′

construction step with total work O(n) and sorting step with total work O(n log n) and the depth

is O(log n) which consists of the O(log n) depth for the construction of A′ and O(log n) depth for

parallel sorting.

Parallel unrolling the iterative recursion: We first observe that there is a sequential de-

pendency in the iterations because of the update process of the tail vertex set as in Line 8 of

Algorithm 17. Therefore, it is not straightforward to execute on each vertex (at Line 7 of Algo-

rithm 17) in parallel. Also, we observed that we can run the iterations in parallel if the dependency

of tail set can be removed. We exactly do this by creating a local tail set for each iteration and

initializing it with the vertices from index i + 1 till κ where κ is the size of tail set before the

iterations begin and i is the current iteration number if presented sequentially. The total work of

this step is O(n + d2) which is a combination of (1) updating the tail set with total work O(n),

www.manaraa.com

139

(2) constructing the Y with total work O(d2), and (2) subset check as in Line 11 of Algorithm 17

with total work O(n). The depth of this step is O(d2) which is a combination of the depths of these

3 aforementioned components: O(1) for updating tail set, O(d2) for computing Y , and O(1) for

subset check.

Parallel computation of Y : We compute Γ(Γ(X∪{v})) by iterating on each vertex in Γ(X∪{v})

in parallel. For each vertex u adjacent to some vertex in Γ(X ∪{v}) we use an atomic counter and

increment by one for each vertex w in Γ(X ∪ {v}) adjacent to u. For doing this, we use a hashmap

with vertices as key and its counter as the value. Finally, we consider those vertices from the map

in the set Y with counter value |Γ(X ∪ {v})|. More details are in Section 7.4.2.

Algorithm 18: ParLMBC(X,Γ(X), tail(X),ms)

Input: X - vertex set, Γ(X) - adjacency list of X

tail(X) - tail vertices of X, ms - minimum size threshold.

Output: B - Set of all maximal bicliques containing X.

1 for v ∈ tail(X) do in parallel

2 if (|Γ(X ∪ {v})| < ms) then

3 tail(X)← tail(X) \ {v}

4 if |X|+ |tail(X)| < ms then

5 return

6 parallel sort vertices of tail(X) into ascending order of |Γ(X ∪ {v})|
7 Let the elements of sorted tail(X) are presented in the order 0..κ

8 for i ∈ [0..κ] do in parallel

9 ntail(X)← tail[i+ 1..κ]

10 if |X ∪ {v}|+ |ntail(X)| > ms then

11 Y ← Γ(Γ(X ∪ {v})) in parallel

12 if Y \ (X ∪ {v}) ⊆ ntail(X) then

13 if |Y | ≥ ms then

14 B ← B∪ < Y,Γ(X ∪ {v}) >
15 ParLMBC(Y,Γ(X ∪ {v}), ntail(X) \ Y,ms)

The formal description of the parallel techniques is presented in Algorithm 18 and we present

the work and depth analysis of ParLMBC in the following theorem:

www.manaraa.com

140

Theorem 1. Given a bipartite graph G = (L,R,E) with n = |L| ≤ |R|, the number of maximal

bicliques M , and the maximum degree d, the total work of ParLMBC is O(ndM) and the depth of

the algorithm is O(d(d2 + log n)).

Proof. From the discussion on the parallel steps, it is easy to see that the total work of ParLMBC is

O(ndM).

To show the depth of the algorithm, note that the overall depth is the depth of a single recursive

call multiplied by the depth of the search tree. From the previous discussion of the depth of the

individual parallel steps, it is clear to see that the depth of a single recursive call is O(d2 + log n).

Now the depth of the search tree is the maximum degree of the graph d. This is because, the

size of X increases by at least 1 when the depth of the search tree is increased by 1 (Line 11 of

Algorithm 18). For contradiction assume that the depth of the search tree is d+ 1. Then there will

be an X at depth d+ 1 with at least d+ 1 vertices. This is a contradiction because the maximum

degree of the graph d. Thus, the depth of the algorithm follows.

7.3.2 Algorithm ParMBE

While ParLMBC is an work-efficient (with respect to MineLMBC) parallel algorithm, we design

another efficient parallel algorithm inspired by the distributed algorithm CDFS. The high level idea

is to reduce the size of the tail set in each of the recursive calls in ParLMBC. We do this by

dividing the entire problem into multiple subproblems with one problem per vertex where the goal

is to enumerate all maximal bicliques where that vertex is the least among all the vertices in that

partition.

Based on this high level idea we present a parallel algorithm ParMBE that works in the following

way: For each vertex v ∈ V (G), we create a subgraph Gv consisting of the vertices in the set

Γ2(v) and enumerate all maximal bicliques from Gv using our parallel algorithm ParLMBC. While

working on the subproblems, it is important not to enumerate a maximal bicliques more than once.

We ensure this by assuming a total ordering of the vertices and initializing the tail set for each

subproblem with the vertices that comes after v in that ordering and belongs to the partition of

www.manaraa.com

141

v. We create this ordering by defining a rank function based on which we order the vertices. In

this work our rank function is based on the degree of the vertices where for any two vertices u

and v, rank(u) > rank(v) if deg(u) > deg(v) and when deg(u) = deg(v), rank(u) > rank(v) if

the absolute value of u is greater than the absolute value of v. ParMBE is presented formally in

Algorithm 19

Algorithm 19: ParMBE(G,ms)

Input: G = (L,R,E) - input graph, ms - minimum size threshold.

Output: B - Set of all maximal bicliques containing X.

1 for v ∈ L do in parallel

2 X ← {v}
3 Γ(X)← Γ(v)

4 tail(X)← ∅
5 for w ∈ Γ(v) do in parallel

6 for y ∈ Γ(w) do in parallel

7 if rank(y) > rank(v) then

8 tail(X)← tail(X) ∪ {y}

9 ParLMBC(X,Γ(X), tail(X),ms)

7.4 Experiments

we empirically evaluate our parallel algorithms ParLMBC and ParMBE and compare with the

state-of-the-art sequential and parallel algorithms MineLMBC and CDFS respectively on real world

bipartite networks to show the parallel speedup and scalability of our parallel algorithms. We

show that our practical efficient parallel algorithm ParMBE provides magnitude of order speedup

compared with MineLMBC and better runtime compared with distributed parallel algorithm CDFS.

We evaluate all the experiments on a Intel 16 core machine where each core is a Xeon(R) CPU E5

2650@2.0GHz processor with 128 GB main memory in the entire system.

www.manaraa.com

142

7.4.1 Datasets

We use 11 real world static bipartite networks from publicly available repository KONECT [83]

for the experiments. The summary of the dataset is presented in Table 7.1.

Table 7.1: Static Bipartite Networks used for evaluation, and their properties.

Dataset #Vertices #Edges #Maximal Bicliques

Writers 135,568 144,340 57,222

Actors(DBpedia) 157,183 281,396 119,868

DBpedia locations 225,486 293,697 75,360

Record labels 186,689 233,286 42,393

Marvel 19,428 96,662 206,135

CiteSeer 286,748 512,267 171,354

YouTube 124,325 293,360 1,826,587

Occupations 229,301 250,945 104,974

IMDB 1,199,919 3,782,463 5,160,061

Stack Overflow 641,873 1,301,942 3,320,824

BookCrossing 445,801 1,149,739 54,458,953

7.4.2 Implementation of the algorithms

In this work we use Intel TBB [20] for all the parallel implementations which extends C++

for writing parallel implementations in an efficient manner by including algorithms, highly con-

current containers, locks and atomic operations, dynamic work stealing scheduler, and a scalable

memory allocator and providing easy to use APIs for using those in the parallel implementa-

tions. In this work we use some of these that we explain below. We use parallel for and

parallel for each APIs for the implementation of the parallel for loop. For the atomic

operations on hashtable we use concurrent hash map, for the atomic operations on unordered

set we use concurrent unordered set, and for atomic operations on the dynamic array we use

concurrent vector. We implement Γ(Γ(X ∪{v})) in parallel in ParLMBC. For doing this, we use a

concurrent hash map from vertex as the key and the the number of vertices in the set Γ(X ∪{v})

it is adjacent to as the value. Then we iterate on the vertices of Γ(X ∪{v}) in parallel and update

www.manaraa.com

143

the frequency of the vertices adjacent to each vertex in Γ(X ∪ {v}). Finally, we generate the set Y

with the vertices in the concurrent hash map whose frequency is |Γ(X∪{v})|. For the parallel sort

we use parallel sort. All of these are provided by TBB. We use C++11 for the implementation

of the algorithms and compile the sources using Intel ICC compiler version 18.0.3 with optimization

level ‘-O3’. System level load balancing is performed using a dynamic work stealing scheduler [20]

built inside TBB.

For the comparison with prior works, we implement state of the art MapReduce algorithm CDFS

in shared memory setting that we call MCoreCDFS. We also implement a more recent sequential

algorithm iMBEA [159].

7.4.3 Discussion of the Results

Now we present and interpret the results of the empirical evaluations of our parallel algorithms.

First we will show the parallel speedup (with respect to MineLMBC) and scalability of ParLMBC

and ParMBE to show that the performance of the parallel algorithms improve when the number of

core is increased. Next we compare our parallel algorithms with MCoreCDFS to show that ParMBE

performs better than MCoreCDFS on all the input graph and then we compare with the sequential

algorithm iMBEA to show that ParLMBC and ParMBE are magnitude order faster than iMBEA. This is

as expected because the performance of iMBEA is much worse than the performance of MineLMBC.

Parallel Speedup: We show the parallel speedup of ParLMBC and ParMBE in Table 7.2. The result

clearly shows the substantially better performance of ParMBE over ParLMBC and magnitude of order

parallel speedup of ParMBE compared with MineLMBC. However, more than 16× speedup of ParMBE

in a 16 core machine clearly indicates that the sequential algorithm MineLMBC is not the most

efficient one.

Scalability: We show the scalability of our parallel algorithms ParLMBC and ParMBE in Table 7.3.

The result shows the algorithms scale up almost linearly as we increase the degree of parallelism

by increasing the number of threads. The x axis is the number of the threads used and the y axis

is the parallel speedup which is a function of the number of threads.

www.manaraa.com

144

Table 7.2: Runtime (in sec.) of MineLMBC, ParLMBC, and ParMBE on 16 cores. Numbers in the

parenthesis indicates the parallel speedup.

Dataset MineLMBC ParLMBC ParMBE

Writers 405 91.2 (4.4x) 0.12 (3375x)

Actors(DBpedia) 1464 295.5 (5x) 2.1 (697x)

DBpedia locations 568.4 135.2 (4.2x) 0.22 (2583.6x)

Record labels 53.03 12.9 (4.11x) 0.21 (252.5x)

Marvel 15.45 4.5 (3.4x) 2.1 (7.3x)

CiteSeer 2554.4 544.8 (4.7x) 0.65 (3929.8x)

YouTube 446.97 85.9 (5.2x) 45.4 (9.8x)

Occupations 1891.46 482.5 (3.9x) 0.22 (8597.5x)

IMDB 40775.6 7904 (5.16x) 621.5 (65.6x)

Stack Overflow 34635 4634.9 (7.5x) 4296.2 (8.06x)

BookCrossing 29229 3894.4 (7.5x) 3481 (8.4x)

Table 7.3: Scalability of ParMBE with respect to MineLMBC by varying the number of threads.

Dataset 16T 8T 4T 2T 1T

Writers 3375x 2531.2x 1760.9x 1038.5x 675x

Actors(DBpedia) 697x 366x 203.3x 105.3x 54.2x

DBpedia locations 2583.6x 1960x 1291.8x 789.4x 474x

Record labels 252.5x 204x 139.6x 81.6x 48x

Marvel 7.3x 4.8x 3.2x 1.7x 0.9x

CiteSeer 3929.8x 2240.7x 1351.5x 709.6x 393x

YouTube 9.8x 5.3x 2.9x 1.5x 0.8x

Occupations 8597.5x 5910.8x 3860.1x 2125.2x 1261x

IMDB 65.6x 35x 20.3x 10.7 6.3x

Stack Overflow 8x 4.2x 2.4x 1.2x 0.6x

BookCrossing 8.4x 4.6x 2.6x 1.3x 0.6x

www.manaraa.com

145

Comparison with prior works: We compare our parallel algorithms ParLMBC and ParMBE with

MCoreCDFS. From Table 7.4 we see that ParMBE is upto 2x faster than MCoreCDFS. This speedup

is due to the use of parallel algorithm ParLMBC in ParMBE for enumerating the maximal biclique

from the subproblems instead of MineLMBC as in MCoreCDFS. We also evaluate a prior sequential

algorithm iMBEA and it appears that MineLMBC is significantly faster over iMBEA. For instance,

MineLMBC takes around 15 seconds to enumerate around 206K maximal bicliques where as iMBEA

takes more than 30 minutes to enumerate those maximal bicliques. In another example, MineLMBC

takes around 560 seconds to enumerate around 75K maximal bicliques where as iMBEA takes more

than an hour for doing exactly the same job.

Table 7.4: Comparison of runtime (in sec.) of ParMBE with CDFS on 16 cores.

Dataset CDFS ParMBE

Writers 0.13 0.12

Actors(DBpedia) 5.8 2.1

DBpedia locations 0.25 0.22

Record labels 0.23 0.21

Marvel 2.7 2.1

CiteSeer 1.2 0.65

YouTube 82.3 45.4

Occupations 0.3 0.22

IMDB 889.3 621.5

Stack Overflow 8866.8 4296.2

BookCrossing 6767.8 3481

7.4.4 New Sequential Algorithm FMBE

Based on the observation from Table 7.2 the parallel speedup of ParMBE compared with MineLMBC

is magnitude of order better than the number of cores (16) in the multicore machine where we

execute all the parallel algorithms. Clearly MineLMBC is not the optimized sequential algorithm

and it indicates a gap between the possibility of a better sequential algorithm and the algorithm

MineLMBC. We fill the gap by designing a new sequential algorithm FMBE where we execute all the

procedures in ParMBE sequentially. Surprisingly, we find that the time complexity of FMBE is better

www.manaraa.com

146

than the time complexity of MineLMBC in both the theory and in practice. We formally present

FMBE in Algorithm 20.

Typically the size of the tail set for each subproblem becomes significantly smaller than the

size of the tail set for the entire graph. Intuitively the significant reduction in the runtime is

related to the reduction in the size of the tail set in the argument of MineLMBC in algorithm FMBE.

The following lemma shows a better time complexity of FMBE than MineLMBC when the maximum

degree d of the graph is much smaller than the number of vertices n.

Lemma 28. Given a bipartite graph G = (L,R,E) with n = |L| ≤ |R|, the number of maximal

bicliques M , and the maximum degree d, the time complexity of FMBE is O(d4M).

Proof. First we show that if b = (bL, bR) is a maximal biclique of G where bL ⊆ L and bR ⊆ R, it

will be enumerated from Gv only where v is the least ranked vertex among all the vertices in bL.

Suppose this is not the case, and assume that b is enumerated from another subgraph Gw for some

w ∈ L. Then, v is not the least ranked vertex among the vertices of bL based on the construction

of Gw. This is a contradiction.

Now for each vertex v ∈ L, the the size of Gv is O(d2) because, in constructing Gv, we consider

the vertex v, the vertices in Γ(v) and the vertices adjacent to each of the vertex in Γ(v). The time

complexity of MineLMBC on the instance of Gv is O(d3Mv) where Mv is the number of maximal

bicliques in Gv and d is the maximum degree of Gv which is same as the maximum degree of the

original graph G. Thus the overall time complexity is
∑

v∈LO(d3Mv) which is O(d4M) because each

maximal cliques will be enumerated at most d times by d different subproblems. This completes

the proof.

In Table 7.5 we show that the runtime of FMBE is magnitude of order lower than the runtime of

MineLMBC in almost all the input graphs. This shows that FMBE is a significantly better sequential

algorithm than MineLMBC. In this table we also show that runtime of ParMBE on 16 threads to show

the consistent parallel speedup compared with FMBE.

www.manaraa.com

147

Algorithm 20: FMBE(G)

Input: G = (L,R,E) - input graph

Output: B - Set of all maximal bicliques containing X.

1 for v ∈ L do

2 X ← {v}
3 Γ(X)← Γ(v)

4 tail(X)← ∅
5 for w ∈ Γ(v) do

6 for y ∈ Γ(w) do

7 if rank(y) > rank(v) then

8 tail(X)← tail(X) ∪ {y}

9 MineLMBC(X,Γ(X), tail(X), 1)

Table 7.5: Comparison of runtime (in sec.) of MineLMBC, FMBE, and ParMBE (on 16 threads). The

speedup of ParMBE in the parenthesis is with respect to new sequential algorithm FMBE.

Dataset MineLMBC FMBE ParMBE

Writers 405 0.72 0.12 (6x)

Actors(DBpedia) 1464 25.9 2.1 (12x)

DBpedia locations 568.4 1.4 0.22 (7x)

Record labels 53.03 1.32 0.21 (6.3x)

Marvel 15.45 15.76 2.1 (7.5x)

CiteSeer 2554.4 6.6 0.65 (10x)

YouTube 446.97 426.07 45.4 (9.4x)

Occupations 1891.5 1.9 0.22 (8.6)

IMDB 40775.6 2654.6 621.5 (4.3x)

Stack Overflow 34,635 24,858 4296.2 (5.8x)

BookCrossing 29,229 25,718 3481(7.5x)

www.manaraa.com

148

CHAPTER 8. CONCLUSION AND FUTURE WORK

In this work we develop incremental and parallel algorithms for efficient mining of dense struc-

tures such as maximal cliques and maximal bicliques that can efficiently process the stream of

incoming edges and can utilize the power of multiple cores in a multicore computing system. We

theoretically prove the efficiency of our algorithms and design practical algorithms considering the

shortcomings of the theoretical designs. Next we implement all the algorithms using efficient data

structures and library tools to show that our algorithms are efficient in practice. We also demon-

strate through experimental studies that our incremental and parallel algorithms substantially

outperforms the state of the art algorithms.

One possible future direction is to extend the incremental algorithmic techniques developed

in this work to the other types of dense structures such as quasi-cliques, quasi-bicliques etc. In

regards of parallel computations, possible future direction is to design efficient parallel algorithm

with provable work-efficiency such as the parallel algorithms developed in this work.

Another direction of further research is in the direction of software development. There are

many softwares that are developed either for efficient stream computation or for efficient parallel

computation. So, it will be interesting to develop software that can combine both. It will be

interesting to design incremental and parallel algorithms such as one developed in this work for

other dense structures such as k-core, quasi-cliques etc. which will help in developing robust

software for incremental data analysis.

One more direction is to realize massive parallelism. There can be many possibilities such as (1)

combining distributed parallel computation and shared memory parallel computations: distribute

the workload in multiple nodes and perform shared memory parallel computation in each of the

node; (2) combining GPU computation and shared memory parallel computation: combine the

power of GPU as well as the shared memory multicore system to efficiently perform the computation

www.manaraa.com

149

utilizing the power of data parallelism as in GPU and the power of instruction level parallelism as

in multicore (nested fork-join model).

www.manaraa.com

150

BIBLIOGRAPHY

[1] Epinions product ratings network dataset – KONECT. http://konect.uni-koblenz.de/

networks/epinions-rating, Apr. 2017.

[2] Last.fm song network dataset – KONECT. http://konect.uni-koblenz.de/networks/

lastfm_song, Apr. 2017.

[3] Movielens 10m network dataset – KONECT. http://konect.uni-koblenz.de/networks/

movielens-10m_rating, Apr. 2017.

[4] Wiktionary (en) network dataset – KONECT. http://konect.uni-koblenz.de/networks/

edit-enwiktionary, Apr. 2017.

[5] J. Abello, M. G. Resende, and S. Sudarsky. Massive quasi-clique detection. In Latin American

symposium on theoretical informatics, pages 598–612. Springer, 2002.

[6] G. Alexe, S. Alexe, Y. Crama, S. Foldes, P. L. Hammer, and B. Simeone. Consensus algo-

rithms for the generation of all maximal bicliques. Discrete Applied Mathematics, 145(1):11–

21, 2004.

[7] J. I. Alvarez-Hamelin, L. Dall’Asta, A. Barrat, and A. Vespignani. Large scale networks

fingerprinting and visualization using the k-core decomposition. In Advances in neural infor-

mation processing systems, pages 41–50, 2006.

[8] R. Andersen. A local algorithm for finding dense subgraphs. ACM Transactions on Algorithms

(TALG), 6(4):60, 2010.

[9] R. Andersen and K. Chellapilla. Finding dense subgraphs with size bounds. In International

Workshop on Algorithms and Models for the Web-Graph, pages 25–37. Springer, 2009.

http://konect.uni-koblenz.de/networks/epinions-rating
http://konect.uni-koblenz.de/networks/epinions-rating
http://konect.uni-koblenz.de/networks/lastfm_song
http://konect.uni-koblenz.de/networks/lastfm_song
http://konect.uni-koblenz.de/networks/movielens-10m_rating
http://konect.uni-koblenz.de/networks/movielens-10m_rating
http://konect.uni-koblenz.de/networks/edit-enwiktionary
http://konect.uni-koblenz.de/networks/edit-enwiktionary

www.manaraa.com

151

[10] A. Angel, N. Koudas, N. Sarkas, D. Srivastava, M. Svendsen, and S. Tirthapura. Dense

subgraph maintenance under streaming edge weight updates for real-time story identification.

The VLDB Journal, pages 1–25, 2013.

[11] D. Avis and K. Fukuda. Reverse search for enumeration. Discrete Applied Mathematics,

65:21–46, 1993.

[12] B. Bahmani, R. Kumar, and S. Vassilvitskii. Densest subgraph in streaming and mapreduce.

VLDB, 5(5):454–465, 2012.

[13] S. Barman. Approximating nash equilibria and dense bipartite subgraphs via an approxi-

mate version of caratheodory’s theorem. In Proceedings of the forty-seventh annual ACM

symposium on Theory of computing, pages 361–369. ACM, 2015.

[14] V. Batagelj and M. Zaversnik. An o (m) algorithm for cores decomposition of networks. arXiv

preprint cs/0310049, 2003.

[15] A. Benshahar, V. Chalifa-Caspi, D. Hermelin, and M. Ziv-Ukelson. A biclique approach to

reference-anchored gene blocks and its applications to genomic islands. Journal of Computa-

tional Biology, 25(2):214–235, 2018.

[16] S. Bhattacharya, M. Henzinger, D. Nanongkai, and C. Tsourakakis. Space-and time-efficient

algorithm for maintaining dense subgraphs on one-pass dynamic streams. In Proceedings of

the forty-seventh annual ACM symposium on Theory of computing, pages 173–182. ACM,

2015.

[17] M. Bhattacharyya and S. Bandyopadhyay. Mining the largest quasi-clique in human protein

interactome. In Adaptive and Intelligent Systems, 2009. ICAIS’09. International Conference

on, pages 194–199. IEEE, 2009.

[18] G. E. Blelloch and B. M. Maggs. Parallel algorithms. In Algorithms and theory of computation

handbook, pages 25–25, 2010.

www.manaraa.com

152

[19] R. D. Blumofe. Executing multithreaded programs efficiently. PhD thesis, Massachusetts

Institute of Technology, 1995.

[20] R. D. Blumofe and C. E. Leiserson. Scheduling multithreaded computations by work stealing.

Journal of the ACM (JACM), 46(5):720–748, 1999.

[21] P. Boldi and S. Vigna. The webgraph framework i: compression techniques. In Proceedings

of the 13th international conference on World Wide Web, pages 595–602. ACM, 2004.

[22] F. Braun, O. Caelen, E. N. Smirnov, S. Kelk, and B. Lebichot. Improving card fraud detection

through suspicious pattern discovery. In International Conference on Industrial, Engineering

and Other Applications of Applied Intelligent Systems, pages 181–190. Springer, 2017.

[23] C. Bron and J. Kerbosch. Algorithm 457: finding all cliques of an undirected graph. Commun.

ACM, 16(9):575–577, 1973.

[24] M. Brunato, H. H. Hoos, and R. Battiti. On effectively finding maximal quasi-cliques in

graphs. In International conference on learning and intelligent optimization, pages 41–55.

Springer, 2007.

[25] D. Chakrabarti, Y. Zhan, and C. Faloutsos. R-mat: A recursive model for graph mining.

In Proceedings of the 2004 SIAM International Conference on Data Mining, pages 442–446.

SIAM, 2004.

[26] M. Charikar. Greedy approximation algorithms for finding dense components in a graph.

In International Workshop on Approximation Algorithms for Combinatorial Optimization,

pages 84–95. Springer, 2000.

[27] A. Chateau, P. Riou, and E. Rivals. Approximate common intervals in multiple genome com-

parison. In Bioinformatics and Biomedicine (BIBM), 2011 IEEE International Conference

on, pages 131–134. IEEE, 2011.

www.manaraa.com

153

[28] Y. Chen and G. M. Crippen. A novel approach to structural alignment using realistic struc-

tural and environmental information. Protein science, 14(12):2935–2946, 2005.

[29] J. Cheng, Y. Ke, S. Chu, and M. T. Özsu. Efficient core decomposition in massive networks.

In 2011 IEEE 27th International Conference on Data Engineering, pages 51–62. IEEE, 2011.

[30] J. Cheng, Y. Ke, A. W.-C. Fu, J. X. Yu, and L. Zhu. Finding maximal cliques in massive

networks. TODS, 36(4):21, 2011.

[31] S.-T. Cheng, Y.-C. Chen, and M.-S. Tsai. Using k-core decomposition to find cluster centers

for k-means algorithm in graphx on spark. CLOUD COMPUTING 2017, page 103, 2017.

[32] N. Chiba and T. Nishizeki. Arboricity and subgraph listing algorithms. SIAM J. Comput.,

14:210–223, 1985.

[33] E. Cohen, E. Halperin, H. Kaplan, and U. Zwick. Reachability and distance queries via 2-hop

labels. SIAM Journal on Computing, 32(5):1338–1355, 2003.

[34] J. Cohen. Trusses: Cohesive subgraphs for social network analysis. National Security Agency

Technical Report, 16, 2008.

[35] J. Cohen. Graph twiddling in a mapreduce world. Computing in Science & Engineering,

11(4):29, 2009.

[36] P. Damaschke. Enumerating maximal bicliques in bipartite graphs with favorable degree

sequences. Information Processing Letters, 114(6):317–321, 2014.

[37] A. Das, S.-V. Sanei-Mehri, and S. Tirthapura. Shared-memory parallel maximal clique enu-

meration. arXiv preprint arXiv:1807.09417, 2018.

[38] A. Das, M. Svendsen, and S. Tirthapura. Change-sensitive algorithms for maintaining maxi-

mal cliques in a dynamic graph. CoRR, abs/1601.06311, 2016.

www.manaraa.com

154

[39] N. S. Dasari, R. Desh, and M. Zubair. Park: An efficient algorithm for k-core decomposition

on multicore processors. In Big Data (Big Data), 2014 IEEE International Conference on,

pages 9–16. IEEE, 2014.

[40] V. M. Dias, C. M. De Figueiredo, and J. L. Szwarcfiter. Generating bicliques of a graph in

lexicographic order. Theoretical Computer Science, 337(1):240–248, 2005.

[41] V. M. Dias, C. M. de Figueiredo, and J. L. Szwarcfiter. On the generation of bicliques of a

graph. Discrete Applied Mathematics, 155(14):1826–1832, 2007.

[42] S. N. Dorogovtsev, A. V. Goltsev, and J. F. F. Mendes. K-core organization of complex

networks. Physical review letters, 96(4):040601, 2006.

[43] A. C. Driskell, C. Ané, J. G. Burleigh, M. M. McMahon, B. C. O’Meara, and M. J. Sanderson.

Prospects for building the tree of life from large sequence databases. Science, 306(5699):1172–

1174, 2004.

[44] N. Du, B. Wu, L. Xu, B. Wang, and X. Pei. A parallel algorithm for enumerating all maximal

cliques in complex network. In ICDM Workshop, pages 320–324. IEEE, 2006.

[45] N. Du, B. Wu, L. Xu, B. Wang, and P. Xin. Parallel algorithm for enumerating maximal

cliques in complex network. In Mining Complex Data, pages 207–221. Springer, 2009.

[46] D. Duan, Y. Li, R. Li, and Z. Lu. Incremental k-clique clustering in dynamic social networks.

Artificial Intelligence Review, pages 1–19, 2012.

[47] A. Epasto, S. Lattanzi, and M. Sozio. Efficient densest subgraph computation in evolving

graphs. In Proceedings of the 24th International Conference on World Wide Web, pages

300–310. International World Wide Web Conferences Steering Committee, 2015.

[48] D. Eppstein. Arboricity and bipartite subgraph listing algorithms. Information processing

letters, 51(4):207–211, 1994.

www.manaraa.com

155

[49] D. Eppstein, M. Löffler, and D. Strash. Listing all maximal cliques in sparse graphs in

near-optimal time. In ISAAC, pages 403–414, 2010.

[50] D. Eppstein and D. Strash. Listing all maximal cliques in large sparse real-world graphs.

In P. Pardalos and S. Rebennack, editors, Experimental Algorithms, volume 6630 of LNCS,

pages 364–375. 2011.

[51] P. Erds and A. Rényi. On the evolution of random graphs. Publ. Math. Inst. Hung. Acad.

Sci, 5:17–61, 1960.

[52] H. Esfandiari, S. Lattanzi, and V. Mirrokni. Parallel and streaming algorithms for k-core

decomposition. arXiv preprint arXiv:1808.02546, 2018.

[53] W. Fan, C. Hu, and C. Tian. Incremental graph computations: Doable and undoable. In

Proceedings of the 2017 ACM International Conference on Management of Data, pages 155–

169. ACM, 2017.

[54] E. Galbrun, A. Gionis, and N. Tatti. Overlapping community detection in labeled graphs.

Data Mining and Knowledge Discovery, 28(5-6):1586–1610, 2014.

[55] A. Gély, L. Nourine, and B. Sadi. Enumeration aspects of maximal cliques and bicliques.

Discrete applied mathematics, 157(7):1447–1459, 2009.

[56] D. Gibson, R. Kumar, and A. Tomkins. Discovering large dense subgraphs in massive graphs.

In VLDB, pages 721–732, 2005.

[57] H. Gmati, A. Mouakher, A. Gonzalez-Pardo, and D. Camacho. A new algorithm for commu-

nities detection in social networks with node attributes. Journal of Ambient Intelligence and

Humanized Computing, pages 1–13, 2019.

[58] A. V. Goldberg. Finding a maximum density subgraph. University of California Berkeley,

CA, 1984.

www.manaraa.com

156

[59] A. V. Goltsev, S. N. Dorogovtsev, and J. F. F. Mendes. k-core (bootstrap) percolation on

complex networks: Critical phenomena and nonlocal effects. Physical Review E, 73(5):056101,

2006.

[60] H. M. Grindley, P. J. Artymiuk, D. W. Rice, and P. Willett. Identification of tertiary structure

resemblance in proteins using a maximal common subgraph isomorphism algorithm. J. Mol.

Biol., 229(3):707–721, 1993.

[61] R. A. Hanneman and M. Riddle. Introduction to social network methods. http://faculty.

ucr.edu/~hanneman/nettext/. Textbook on the web.

[62] E. Harley, A. Bonner, and N. Goodman. Uniform integration of genome mapping data using

intersection graphs. Bioinformatics, 17(6):487–494, 2001.

[63] J. A. Hartigan and M. A. Wong. Algorithm as 136: A k-means clustering algorithm. Journal

of the Royal Statistical Society. Series C (Applied Statistics), 28(1):100–108, 1979.

[64] M. Hattori, Y. Okuno, S. Goto, and M. Kanehisa. Development of a chemical structure com-

parison method for integrated analysis of chemical and genomic information in the metabolic

pathways. J. Am. Chem. Soc., 125(39):11853–11865, 2003.

[65] X. Huang, H. Cheng, L. Qin, W. Tian, and J. X. Yu. Querying k-truss community in large

and dynamic graphs. In SIGMOD, pages 1311–1322, 2014.

[66] S.-C. Hung, M. Araujo, and C. Faloutsos. Distributed community detection on edge-labeled

graphs using spark. In 12th International Workshop on Mining and Learning with Graphs

(MLG), volume 113, 2016.

[67] M. M.-u. Hussain, A. Wang, and G. Trajcevski. Co-maxrs: Continuous maximizing range-sum

query. Sciences, 305:110–129, 2015.

[68] A. Java, X. Song, T. Finin, and B. L. Tseng. Why we twitter: An analysis of a microblogging

community. In WebKDD/SNA-KDD, pages 118–138, 2007.

http://faculty.ucr.edu/~hanneman/nettext/
http://faculty.ucr.edu/~hanneman/nettext/

www.manaraa.com

157

[69] H. Jin, N. Wang, D. Yu, Q.-S. Hua, X. Shi, and X. Xie. Core maintenance in dynamic graphs:

A parallel approach based on matching. IEEE Transactions on Parallel and Distributed

Systems, 29(11):2416–2428, 2018.

[70] R. Jin, Y. Xiang, N. Ruan, and D. Fuhry. 3-hop: a high-compression indexing scheme for

reachability query. In Proceedings of the 2009 ACM SIGMOD International Conference on

Management of data, pages 813–826. ACM, 2009.

[71] D. S. Johnson, M. Yannakakis, and C. H. Papadimitriou. On generating all maximal inde-

pendent sets. Information Processing Letters, 27(3):119–123, 1988.

[72] P. F. Jonsson and P. A. Bates. Global topological features of cancer proteins in the human

interactome. Bioinformatics, 22(18):2291–2297, 2006.

[73] H. Kabir and K. Madduri. Parallel k-core decomposition on multicore platforms. In Paral-

lel and Distributed Processing Symposium Workshops (IPDPSW), 2017 IEEE International,

pages 1482–1491. IEEE, 2017.

[74] H. Kabir and K. Madduri. Parallel k-truss decomposition on multicore systems. In High

Performance Extreme Computing Conference (HPEC), 2017 IEEE, pages 1–7. IEEE, 2017.

[75] W. Khaouid, M. Barsky, V. Srinivasan, and A. Thomo. K-core decomposition of large net-

works on a single pc. Proceedings of the VLDB Endowment, 9(1):13–23, 2015.

[76] A. Khosraviani and M. Sharifi. A distributed algorithm for γ-quasi-clique extractions in

massive graphs. In Innovative Computing Technology, pages 422–431. Springer, 2011.

[77] S. Khuller and B. Saha. On finding dense subgraphs. In International Colloquium on Au-

tomata, Languages, and Programming, pages 597–608. Springer, 2009.

[78] I. Koch. Enumerating all connected maximal common subgraphs in two graphs. Theoretical

Computer Science, 250(1):1–30, 2001.

www.manaraa.com

158

[79] S. Koichi, M. Arisaka, H. Koshino, A. Aoki, S. Iwata, T. Uno, and H. Satoh. Chemical

structure elucidation from 13c nmr chemical shifts: Efficient data processing using bipartite

matching and maximal clique algorithms. JCIM, 54(4):1027–1035, 2014.

[80] D. Koller and N. Friedman. Probabilistic Graphical Models: Principles and Techniques. MIT

Press, 2009.

[81] F. Kose, W. Weckwerth, T. Linke, and O. Fiehn. Visualizing plant metabolomic correlation

networks using clique-metabolite matrices. Bioinformatics, 17(12):1198–1208, 2001.

[82] R. Kumar, P. Raghavan, S. Rajagopalan, and A. Tomkins. Trawling the web for emerging

cyber-communities. Computer networks, 31(11):1481–1493, 1999.

[83] J. Kunegis. Konect: the koblenz network collection. In WWW, pages 1343–1350. ACM, 2013.

[84] A. Kyrola, G. Blelloch, and C. Guestrin. Graphchi: Large-scale graph computation on just a

{PC}. In Presented as part of the 10th {USENIX} Symposium on Operating Systems Design

and Implementation ({OSDI} 12), pages 31–46, 2012.

[85] S. Lehmann, M. Schwartz, and L. K. Hansen. Biclique communities. Phys. Rev. E, 78:016108,

Jul 2008.

[86] J. Leskovec and A. Krevl. SNAP Datasets: Stanford large network dataset collection. http:

//snap.stanford.edu/data, 2014.

[87] B. Lessley, T. Perciano, M. Mathai, H. Childs, and E. W. Bethel. Maximal clique enumeration

with data-parallel primitives. In 2017 IEEE 7th Symposium on Large Data Analysis and

Visualization (LDAV), pages 16–25. IEEE, 2017.

[88] J. Li, H. Li, D. Soh, and L. Wong. A correspondence between maximal complete bipartite

subgraphs and closed patterns. In European Conference on Principles of Data Mining and

Knowledge Discovery, pages 146–156. Springer, 2005.

http://snap.stanford.edu/data
http://snap.stanford.edu/data

www.manaraa.com

159

[89] J. Li, K. Sim, G. Liu, and L. Wong. Maximal quasi-bicliques with balanced noise tolerance:

Concepts and co-clustering applications. In Proceedings of the 2008 SIAM International

Conference on Data Mining, pages 72–83. SIAM, 2008.

[90] R. Li, J. X. Yu, and R. Mao. Efficient core maintenance in large dynamic graphs. TKDE,

26(10):2453–2465, 2014.

[91] C. Liang, Y. Li, and J. Luo. A novel method to detect functional microrna regulatory modules

by bicliques merging. IEEE/ACM Transactions on Computational Biology and Bioinformat-

ics (TCBB), 13(3):549–556, 2016.

[92] G. Liu, K. Sim, and J. Li. Efficient mining of large maximal bicliques. In Data warehousing

and knowledge discovery, pages 437–448. Springer, 2006.

[93] G. Liu and L. Wong. Effective pruning techniques for mining quasi-cliques. In Joint European

conference on machine learning and knowledge discovery in databases, pages 33–49. Springer,

2008.

[94] D. Lo, D. Surian, K. Zhang, and E.-P. Lim. Mining direct antagonistic communities in explicit

trust networks. In CIKM, pages 1013–1018, 2011.

[95] L. Lu, Y. Gu, and R. Grossman. dmaximalcliques: A distributed algorithm for enumerating

all maximal cliques and maximal clique distribution. In Data Mining Workshops (ICDMW),

2010 IEEE International Conference on, pages 1320–1327. IEEE, 2010.

[96] L. Lü, T. Zhou, Q.-M. Zhang, and H. E. Stanley. The h-index of a network node and its

relation to degree and coreness. Nature communications, 7:10168, 2016.

[97] K. Makino and T. Uno. New algorithms for enumerating all maximal cliques. In SWAT,

pages 260–272. 2004.

[98] A. McGregor, D. Tench, S. Vorotnikova, and H. T. Vu. Densest subgraph in dynamic graph

streams. In MFCS, pages 472–482, 2015.

www.manaraa.com

160

[99] D. Miorandi and F. De Pellegrini. K-shell decomposition for dynamic complex networks. In

8th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless

Networks, pages 488–496. IEEE, 2010.

[100] N. Mishra, D. Ron, and R. Swaminathan. A new conceptual clustering framework. Machine

Learning, 56(1-3):115–151, 2004.

[101] M. Mitzenmacher, J. Pachocki, R. Peng, C. Tsourakakis, and S. C. Xu. Scalable large

near-clique detection in large-scale networks via sampling. In Proceedings of the 21th ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 815–824.

ACM, 2015.

[102] S. Mohseni-Zadeh, P. Brézellec, and J.-L. Risler. Cluster-c, an algorithm for the large-scale

clustering of protein sequences based on the extraction of maximal cliques. Comp. Biol.

Chem., 28(3):211–218, 2004.

[103] A. Montresor, F. De Pellegrini, and D. Miorandi. Distributed k-core decomposition. IEEE

Transactions on parallel and distributed systems, 24(2):288–300, 2013.

[104] J. W. Moon and L. Moser. On cliques in graphs. Israel J. Math., 3(1):23–28, 1965.

[105] A. P. Mukherjee and S. Tirthapura. Enumerating maximal bicliques from a large graph using

mapreduce. In IEEE BigData Congress, pages 707–716, 2014.

[106] A. P. Mukherjee and S. Tirthapura. Enumerating maximal bicliques from a large graph using

mapreduce. IEEE Trans. Services Computing, 10(5):771–784, 2017.

[107] A. P. Mukherjee, P. Xu, and S. Tirthapura. Enumeration of maximal cliques from an uncertain

graph. IEEE Trans. Knowl. Data Eng., 29(3):543–555, 2017.

[108] T. Murata. Discovery of user communities from web audience measurement data. In Web

Intelligence, 2004. WI 2004. Proceedings. IEEE/WIC/ACM International Conference on,

pages 673–676. IEEE, 2004.

www.manaraa.com

161

[109] R. A. Mushlin, A. Kershenbaum, S. T. Gallagher, and T. R. Rebbeck. A graph-theoretical

approach for pattern discovery in epidemiological research. IBM systems journal, 46(1):135–

149, 2007.

[110] M. A. U. Nasir, A. Gionis, G. D. F. Morales, and S. Girdzijauskas. Fully dynamic algorithm

for top-k densest subgraphs. algorithms, 9(15):24, 2017.

[111] R. Nataraj and S. Selvan. Parallel mining of large maximal bicliques using order preserving

generators. International Journal of Computing, 8(3):105–113, 2014.

[112] T. J. Ottosen and J. Vomlel. Honour thy neighbour: clique maintenance in dynamic graphs.

In PGM, pages 201–208, 2010.

[113] G. Palla, I. Derényi, I. Farkas, and T. Vicsek. Uncovering the overlapping community struc-

ture of complex networks in nature and society. Nature, 435(7043):814–818, 2005.

[114] N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Efficient mining of association rules using

closed itemset lattices. Information systems, 24(1):25–46, 1999.

[115] J. Pattillo, A. Veremyev, S. Butenko, and V. Boginski. On the maximum quasi-clique problem.

Discrete Applied Mathematics, 161(1-2):244–257, 2013.

[116] J. Pei, D. Jiang, and A. Zhang. On mining cross-graph quasi-cliques. In Proceedings of the

eleventh ACM SIGKDD international conference on Knowledge discovery in data mining,

pages 228–238. ACM, 2005.

[117] E. Prisner. Bicliques in graphs i: Bounds on their number. Combinatorica, 20(1):109–117,

2000.

[118] L. Quick, P. Wilkinson, and D. Hardcastle. Using pregel-like large scale graph processing

frameworks for social network analysis. In 2012 IEEE/ACM International Conference on

Advances in Social Networks Analysis and Mining, pages 457–463. IEEE, 2012.

www.manaraa.com

162

[119] O. Rokhlenko, Y. Wexler, and Z. Yakhini. Similarities and differences of gene expression in

yeast stress conditions. Bioinformatics, 23(2):e184–e190, 2007.

[120] J. E. Rome and R. M. Haralick. Towards a formal concept analysis approach to exploring

communities on the world wide web. In Formal Concept Analysis, volume 3403 of LNCS,

pages 33–48. 2005.

[121] R. A. Rossi. Fast triangle core decomposition for mining large graphs. In Pacific-Asia

Conference on Knowledge Discovery and Data Mining, pages 310–322. Springer, 2014.

[122] R. A. Rossi and N. K. Ahmed. The network data repository with interactive graph analytics

and visualization. In AAAI, pages 4292–4293, 2015.

[123] P. San Segundo, J. Artieda, and D. Strash. Efficiently enumerating all maximal cliques with

bit-parallelism. Computers & Operations Research, 92:37–46, 2018.

[124] M. J. Sanderson, A. C. Driskell, R. H. Ree, O. Eulenstein, and S. Langley. Obtaining max-

imal concatenated phylogenetic data sets from large sequence databases. Mol. Biol. Evol.,

20(7):1036–1042, 2003.

[125] A. E. Sariyüce, B. Gedik, G. Jacques-Silva, K. Wu, and Ü. V. Çatalyürek. Streaming algo-

rithms for k-core decomposition. PVLDB, 6(6):433–444, 2013.

[126] A. E. Sarıyüce, B. Gedik, G. Jacques-Silva, K.-L. Wu, and Ü. V. Çatalyürek. Incremental

k-core decomposition: algorithms and evaluation. The VLDB Journal, 25(3):425–447, 2016.

[127] A. E. Sariyüce, C. Seshadhri, and A. Pinar. Local algorithms for hierarchical dense subgraph

discovery. Proceedings of the VLDB Endowment, 12(1):43–56, 2018.

[128] R. Schenkel, A. Theobald, and G. Weikum. Hopi: An efficient connection index for complex

xml document collections. In International Conference on Extending Database Technology,

pages 237–255. Springer, 2004.

www.manaraa.com

163

[129] M. C. Schmidt, N. F. Samatova, K. Thomas, and B.-H. Park. A scalable, parallel algorithm for

maximal clique enumeration. Journal of Parallel and Distributed Computing, 69(4):417–428,

2009.

[130] O. Shalev and N. Shavit. Split-ordered lists: Lock-free extensible hash tables. Journal of the

ACM (JACM), 53(3):379–405, 2006.

[131] Y. Shao, L. Chen, and B. Cui. Efficient cohesive subgraphs detection in parallel. In Proceedings

of the 2014 ACM SIGMOD International Conference on Management of Data, pages 613–624.

ACM, 2014.

[132] K. Sim, J. Li, V. Gopalkrishnan, and G. Liu. Mining maximal quasi-bicliques to co-cluster

stocks and financial ratios for value investment. In Data Mining, 2006. ICDM’06. Sixth

International Conference on, pages 1059–1063. IEEE, 2006.

[133] K. Sim, J. Li, V. Gopalkrishnan, and G. Liu. Mining maximal quasi-bicliques: Novel algo-

rithm and applications in the stock market and protein networks. Statistical Analysis and

Data Mining: The ASA Data Science Journal, 2(4):255–273, 2009.

[134] N. Simsiri, K. Tangwongsan, S. Tirthapura, and K.-L. Wu. Work-efficient parallel union-find

with applications to incremental graph connectivity. In European Conference on Parallel

Processing, pages 561–573. Springer, 2016.

[135] V. Stix. Finding all maximal cliques in dynamic graphs. Comput. Optim. Appl., 27(2):173–

186, 2004.

[136] S. Sun, Y. Wang, W. Liao, and W. Wang. Mining maximal cliques on dynamic graphs

efficiently by local strategies. In Data Engineering (ICDE), 2017 IEEE 33rd International

Conference on, pages 115–118. IEEE, 2017.

[137] M. Svendsen, A. P. Mukherjee, and S. Tirthapura. Mining maximal cliques from a large graph

using mapreduce: Tackling highly uneven subproblem sizes. J. Parallel Distrib. Comput., 79-

80:104–114, 2015.

www.manaraa.com

164

[138] M. Svendsen, A. P. Mukherjee, and S. Tirthapura. Mining maximal cliques from a large

graph using mapreduce: Tackling highly uneven subproblem sizes. JPDC, 79:104–114, 2015.

[139] N. Tatti and A. Gionis. Density-friendly graph decomposition. In Proceedings of the 24th

International Conference on World Wide Web, pages 1089–1099. International World Wide

Web Conferences Steering Committee, 2015.

[140] M. Thorup. Decremental dynamic connectivity. Journal of Algorithms, 33(2):229–243, 1999.

[141] E. Tomita and T. Kameda. An efficient branch-and-bound algorithm for finding a maximum

clique with computational experiments. J. Global Optimization, 44(2):311, 2009.

[142] E. Tomita, Y. Sutani, T. Higashi, S. Takahashi, and M. Wakatsuki. A simple and faster

branch-and-bound algorithm for finding a maximum clique. In WALCOM: Algorithms and

Computation, 4th International Workshop, WALCOM 2010, Dhaka, Bangladesh, February

10-12, 2010. Proceedings, pages 191–203, 2010.

[143] E. Tomita, A. Tanaka, and H. Takahashi. The worst-case time complexity for generating all

maximal cliques and computational experiments. Theoretical Computer Science, 363(1):28–

42, 2006.

[144] E. Tomita, K. Yoshida, T. Hatta, A. Nagao, H. Ito, and M. Wakatsuki. A much faster

branch-and-bound algorithm for finding a maximum clique. In Frontiers in Algorithmics, 10th

International Workshop, FAW 2016, Qingdao, China, June 30- July 2, 2016, Proceedings,

pages 215–226, 2016.

[145] C. Tsourakakis. The k-clique densest subgraph problem. In Proceedings of the 24th inter-

national conference on world wide web, pages 1122–1132. International World Wide Web

Conferences Steering Committee, 2015.

[146] C. Tsourakakis, F. Bonchi, A. Gionis, F. Gullo, and M. Tsiarli. Denser than the densest

subgraph: extracting optimal quasi-cliques with quality guarantees. In Proceedings of the

www.manaraa.com

165

19th ACM SIGKDD international conference on Knowledge discovery and data mining, pages

104–112. ACM, 2013.

[147] C. E. Tsourakakis. A novel approach to finding near-cliques: The triangle-densest subgraph

problem. arXiv preprint arXiv:1405.1477, 2014.

[148] S. Tsukiyama, M. Ide, H. Ariyoshi, and I. Shirakawa. A new algorithm for generating all the

maximal independent sets. SIAM J. Comput., 6(3):505–517, 1977.

[149] T. Uno. An efficient algorithm for solving pseudo clique enumeration problem. Algorithmica,

56(1):3–16, 2010.

[150] J. Wang and J. Cheng. Truss decomposition in massive networks. Proceedings of the VLDB

Endowment, 5(9):812–823, 2012.

[151] B. Wu, S. Yang, H. Zhao, and B. Wang. A distributed algorithm to enumerate all maximal

cliques in mapreduce. In Frontier of Computer Science and Technology, 2009. FCST’09.

Fourth International Conference on, pages 45–51. IEEE, 2009.

[152] C. Wulff-Nilsen. Faster deterministic fully-dynamic graph connectivity. In Proceedings of

the twenty-fourth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1757–1769.

SIAM, 2013.

[153] Y. Xu, J. Cheng, A. W.-C. Fu, and Y. Bu. Distributed maximal clique computation. In IEEE

BigData Congress, pages 160–167, 2014.

[154] C. Yan, J. G. Burleigh, and O. Eulenstein. Identifying optimal incomplete phylogenetic data

sets from sequence databases. Mol. Phylogenet. Evol., 35(3):528–535, 2005.

[155] M. J. Zaki and C.-J. Hsiao. Charm: An efficient algorithm for closed itemset mining. In

Proceedings of the 2002 SIAM international conference on data mining, pages 457–473. SIAM,

2002.

www.manaraa.com

166

[156] Z. Zeng, J. Wang, L. Zhou, and G. Karypis. Coherent closed quasi-clique discovery from large

dense graph databases. In Proceedings of the 12th ACM SIGKDD international conference

on Knowledge discovery and data mining, pages 797–802. ACM, 2006.

[157] B. Zhang, B.-H. Park, T. Karpinets, and N. F. Samatova. From pull-down data to protein

interaction networks and complexes with biological relevance. Bioinformatics, 24(7):979–986,

2008.

[158] Y. Zhang, F. N. Abu-Khzam, N. E. Baldwin, E. J. Chesler, M. A. Langston, and N. F. Sam-

atova. Genome-scale computational approaches to memory-intensive applications in systems

biology. In Proceedings of the 2005 ACM/IEEE conference on Supercomputing, page 12. IEEE

Computer Society, 2005.

[159] Y. Zhang, C. A. Phillips, G. L. Rogers, E. J. Baker, E. J. Chesler, and M. A. Langston. On

finding bicliques in bipartite graphs: a novel algorithm and its application to the integration

of diverse biological data types. BMC bioinformatics, 15(1):1, 2014.

[160] Y. Zhang, J. Wang, Z. Zeng, and L. Zhou. Parallel mining of closed quasi-cliques. In Parallel

and Distributed Processing, 2008. IPDPS 2008. IEEE International Symposium on, pages

1–10. IEEE, 2008.

[161] Y. Zhang, J. X. Yu, Y. Zhang, and L. Qin. A fast order-based approach for core maintenance.

In 2017 IEEE 33rd International Conference on Data Engineering (ICDE), pages 337–348.

IEEE, 2017.

[162] R. Zhou, C. Liu, J. X. Yu, W. Liang, and Y. Zhang. Efficient truss maintenance in evolving

networks. arXiv preprint arXiv:1402.2807, 2014.

	2019
	Incremental and parallel algorithms for dense subgraph mining
	Apurba Das
	Recommended Citation

	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ACKNOWLEDGMENTS
	ABSTRACT
	1. OVERVIEW
	1.1 Introduction
	1.2 Dense Structures in a Graph
	1.3 Dynamic Graph Algorithms
	1.4 Parallel Algorithms

	2. CONTRIBUTIONS
	2.1 Incremental Maintenance of Maximal Cliques
	2.2 Parallel Maximal Clique Enumeration on Static and Dynamic Graphs
	2.3 Incremental Maintenance of Maximal Bicliques
	2.4 Parallel Maximal Biclique Enumeration on Static Bipartite Graphs

	3. PREVIOUS WORKS
	3.1 Maximal Cliques
	3.1.1 Sequential Algorithms
	3.1.2 Parallel Algorithms

	3.2 Maximal Bicliques
	3.2.1 Sequential Algorithms
	3.2.2 Parallel Algorithms

	3.3 Other Dense Structures
	3.3.1 Algorithms for Static Graphs
	3.3.2 Algorithms for Dynamic Graphs

	4. MAINTENANCE OF MAXIMAL CLIQUES
	4.1 Introduction
	4.2 Preliminaries
	4.3 Magnitude of Change
	4.3.1 Maximum Possible Change in Maximal Cliques
	4.3.2 An Error in a Result of Moon and Moser (1965)
	4.3.3 Bound on the size of change parameterized by max degree of G
	4.3.4 Bound on the size of change parameterized by degeneracy d of G

	4.4 Enumeration of Change in the Set of Maximal Cliques
	4.4.1 Enumeration of New Maximal Cliques
	4.4.2 Practical Algorithm for Enumerating New Maximal Cliques
	4.4.3 Enumeration of Subsumed Maximal Cliques
	4.4.4 Decremental Case
	4.4.5 Fully Dynamic Case

	4.5 Discussion
	4.6 Experimental Evaluation
	4.6.1 Datasets
	4.6.2 Experimental Setup and Implementation Details
	4.6.3 Discussion of Experimental Results

	5. PARALLEL MAXIMAL CLIQUE ENUMERATION ON STATIC AND DYNAMIC GRAPHS
	5.1 Introduction
	5.2 Preliminaries
	5.3 Parallel MCE Algorithms on a Static Graph
	5.3.1 Algorithm ParTTT
	5.3.2 Algorithm ParMCE

	5.4 Parallel MCE Algorithm on a Dynamic Graph
	5.4.1 Parallel Enumeration of New Maximal Cliques
	5.4.2 Parallel Enumeration of Subsumed Cliques

	5.5 Evaluation
	5.5.1 Datasets
	5.5.2 Implementation of the Algorithms
	5.5.3 Discussion of the Results
	5.5.4 Comparison with prior work
	5.5.5 Summary of Experimental Results

	6. MAINTENANCE OF MAXIMAL BICLIQUES
	6.1 Introduction
	6.2 Preliminaries
	6.3 Algorithms for Maximal Bicliques
	6.3.1 Baseline Algorithms for Maximal Bicliques
	6.3.2 Change-Sensitive Algorithm DynamicBC
	6.3.3 Enumerating New Maximal Bicliques
	6.3.4 Enumerating Subsumed Maximal Bicliques
	6.3.5 Decremental and Fully Dynamic Cases

	6.4 Magnitude of change in Bicliques
	6.5 Experimental Evaluation
	6.5.1 Datasets
	6.5.2 Experimental Setup and Implementation Details
	6.5.3 Discussion of Results

	7. PARALLEL MAXIMAL BICLIQUE ENUMERATION ON STATIC BIPARTITE GRAPH
	7.1 Introduction
	7.2 Preliminaries
	7.3 Parallel MBE Algorithms
	7.3.1 Algorithm ParLMBC
	7.3.2 Algorithm ParMBE

	7.4 Experiments
	7.4.1 Datasets
	7.4.2 Implementation of the algorithms
	7.4.3 Discussion of the Results
	7.4.4 New Sequential Algorithm FMBE

	8. CONCLUSION AND FUTURE WORK
	BIBLIOGRAPHY

